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ABSTRACT

In Multi-Agent Reinforcement Learning, re-
searchers often face a challenging trade-off: the
use of complex environments that demand sub-
stantial computational resources, or simpler dy-
namics for expedited execution, albeit at the cost
of transferability to more realistic tasks. This ar-
ticle delves into the potential of vectorizable en-
vironments, which enable parallel environment
rollout and fully harness the parallelization capa-
bilities of modern GPUs. We present a compar-
ison of various RL environment libraries, high-
lighting their features and limitations for end-to-
end hardware-accelerated training pipelines. We
observe that the most commonly used RL algo-
rithm libraries have yet to fully embrace end-
to-end hardware-accelerated training pipeline
and the limited cross-compatibility between the
frameworks used for hardware acceleration and
parallelization in machine learning: PyTorch,
TensorFlow, and JAX, limits the mix-and-match
options for RL environments and algorithms li-
braries.

1 INTRODUCTION

A swarm of drones is a prime example of the Decentral-
ized Partially Observable Markov Decision Processes (Dec-
POMDPs) problem that can be addressed using Multi-Agent
Reinforcement Learning (MARL). In this application, each
drone operates as an individual agent with its own set of
actions and observations. The drones must collaborate to
achieve a common goal, such as area surveillance or delivery
tasks, despite having only partial and local observations of the
environment. The inherent non-stationarity and decentralized
partial observability in such a setup makes MARL a suitable
approach. Through MARL, each drone learns from its inter-
actions with the environment and other drones, improving its
policy over time to contribute effectively to the overall objec-
tive of the swarm. However, generating environment data can
be slow, especially for complex environments.

Reinforcement Learning (RL) is notoriously sample inef-
ficient, a problem worsened in MARL due to non-stationarity
and decentralized partial observability. Workloads for RL
agents are steadily increasing as we tackle more complex
problems that require millions of training steps. This issue is
worsened by the need for hyperparameter tuning in deep RL,
which requires time-consuming repeated training sessions.

To address this issue, research has focused on scalable RL
frameworks. Current training pipelines use CPUs for simu-
lating environment physics, calculating rewards, and running
the environment, while GPUs accelerate neural network mod-
els during training and inference. Increasing environment
throughput often involves parallelizing the environment; prior
work has used multiple CPU cores and multi-threading to run
multiple environment instances in parallel to speed up roll-
outs. However, this approach is limited by the number of
cores and memory usage. Therefore, training in complex en-
vironments requires scaling up on massive distributed sys-
tems, such as large clusters with thousands of CPUs. De-
spite the use of these powerful systems, training times remain
lengthy due to the data transfer bottleneck between the CPU,
where the environment is simulated, and the GPU, where the
agents are trained and evaluated. This has led to a trade-off
in RL research: use complex environments requiring large
compute resources, making it inaccessible to researchers with
limited resources, or rely on simpler dynamics for faster ex-
ecution, which makes the transferability of results to more
realistic tasks more challenging.

To overcome these challenges, researchers are exploring
the use of hardware accelerators to create end-to-end training
pipelines. This approach leverages the parallelization capa-
bilities of modern GPUs to achieve orders of magnitude faster
training pipelines. This could significantly advance RL re-
search by speeding up the testing and iteration of ideas, lower-
ing computational barriers for in-depth MARL research, and
allowing experiments that previously required a data center to
be conducted locally on desktops or small GPU servers.

However, this article aims to show that the most com-
monly used RL libraries have yet to fully embrace end-to-
end hardware-accelerated training pipelines. Hardware ac-
celeration in the field of machine learning (ML) necessitates
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a choice between the three leading frameworks: PyTorch
[1], TensorFlow [2], and JAX [3], which have limited cross-
compatibility. This means that if an RL environment library
adopts one of these frameworks, it may face compatibility
issues with RL algorithms that are designed using the other
frameworks. This limits the mix-and-match options for RL
environments and algorithms libraries.

2 BACKGROUND

2.1 Reinforcement Learning
Reinforcement Learning is a type of machine learning for

sequential decision-making. In a rollout phase, an agent in-
teracts with an uncertain environment which provides it with
a partial observations of its state, takes a series of actions
following a policy and receives a scalar feedback in the form
of rewards. These sequences of observe-act-reward, repeated
over time, form the rollouts. The collected rollouts are then
used to update the policy in a learning phase, which will then
be employed in the rollout phase of the next training iteration.

2.2 Multi-Agent Reinforcement Learning
Single-agent RL methods often fail in multi-agent set-

tings due to the well-known curse of dimensionality and non-
stationarity. Recently, MARL approaches addressed these
issues with the Centralized Training, Decentralized Execu-
tion (CTDE) approach. By training the agents in a central-
ized manner to leverage global information and then execut-
ing the learned policies in a decentralized manner, CTDE
ensures scalability and robustness. Several state-of-the-art
MARL algorithms have been developed under the CTDE

framework, including value-based methods like QMIX [17]
and VDAC [18], and policy gradient methods like MADDPG
[19], MAPPO [20], and multi-agent versions of SAC [21].

2.3 Environments

Simulations are integral to RL for ensuring safety and
enhancing iteration speed. They provide a risk-free testing
ground, preventing real-world mishaps like crashes or en-
vironmental damage. Additionally, simulations are efficient
and scalable, enabling rapid trial-and-error iterations, which
are essential for the learning process in RL. A wide range of
simulators were designed to help develop RL and MARL al-
gorithms and solve problems for real-life drone applications.
The degree of realism of these environments can vary. On
one end, we have environments with complex physics en-
gines that simulate low-level tasks, focusing on issues related
to sensing and low-level control. On the other end, we have
high-level simulations with often 2D dynamics engines that
focus on high-level tasks like coordination for multi-agent
operations. Table 1 lists a set of environments and highlights
their features related to drone-oriented tasks.

3 THREE ML FRAMEWORKS

Hardware acceleration in the field of machine learning,
whether for environments or training algorithms, necessitates
a choice between the three leading frameworks: PyTorch [1],
TensorFlow [2], and JAX [3]. In this section, we describe
each framework. Table 2 summarizes the various features of
each framework.

Environment Statea Actionb PartObsc Randomd Physicse Dronef MARLg #Agentsh Collabi Adversj Heterok Comml

gymnasium [4] C C ✓ ✓ Any ✓ ✗ - - - - -
PettingZoo [5] C C ✓ ✓ 2D ✗ ✓ <100 ✓ ✓ ✓ ✓

Pybullet-drones [6] C C ✗ ✓ 3D ✓ ✓ <10 ✓ ✗ ✗ ✗

EnvPool [7] C C ✗ ✓ 2D/3D ✗ ✗ - - - - -
MAgent [8] D D ✗ ✓ Grid ✗ ✓ >1000 ✗ ✓ ✗ ✗

brax [9] C C ✗ ✓ 3D ✗ ✗ - - - - -
gymnax [10] C C ✗ ✓ 2D ✗ ✗ - - - - -

IsaacSIM [11] C C ✓ ✓ 3D ✓ ✓ <10 ✓ ✗ ✗ ✗

Gigastep [12] C C ✓ ✓ 2D ✗ ✓ >1000 ✓ ✓ ✓
VMAS [13] C C ✓ ✓ 2D ✗ ✓ <100 ✓ ✓ ✓ ✓

JaxMARL [14] C C ✓ ✓ 2D/3D ✗ ✓ <10 ✓ ✓ ✓ ✓
Jumanji [15] C C ✗ ✓ 2D ✗ ✓ - ✓ ✓ ✗ ✓

CrazyRL [16] C C ✗ ✗ 3D ✓ ✓ <10 ✓ ✗ ✗ ✗

a Continuous (C) or discrete (D) state space
b Continuous (C) or discrete (D) actions space
c Environments support partial observability
d Environments support domain randomization
e Type of physics engine used for the simulation
f Environment natively handle drone oriented tasks

g Native support for multi-agent reinforcement learning
h Number of agents generally supported
i Collaborative multi-agent tasks
j Adversarial multi-agent tasks
k Handle heterogeneous agents
l Handle Inter-Agents communications

Table 1: Comparison of different RL environments features
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Framework PyTorch TensorFlow JAX

Neural Networks torch.nn Keras Flax, Haiku
Gradient processing and optimization torch.optim tf.optimizers or tf.train Optax
Checkpointing torch.save,

torch.load
tf.train.Checkpoint,
tf.train.CheckpointManager

Orbax

Testing utilities unittest, pytest tf.test Chex
Distributions torch.distributions TensorFlow Probability Distrax, TensorFlow

Probability

Parallelization Not automatic Not automatic Automatic
Target Audience Researcher,

Developers
Researcher, Developers Researchers

Maturity of Development Mature Mature Not Mature

Table 2: Comparison of the three different ML Frameworks

3.1 PyTorch

PyTorch is an open ML library developed by Meta AI
Research, and now governed by PyTorch Foundation, a
subsidiary of the Linux Foundation. PyTorch handles Py-
Torch tensors, similar to NumPy multidimensional arrays,
but that can be operated on CUDA GPUs. Environments
implemented using PyTorch tensors can be vectorized and
hardware-accelerated, such as VMAS [13]. PyTorch bene-
fits from a very consistent and mature ecosystem, with all
main libraries needed for ML research being developed and
maintained in the same package. It is an easily debuggable,
hackable, and very flexible framework, and fits well into the
Python ecosystem, allowing the use of Python debugger tools
for debugging PyTorch code. It is targeted at both developers
and researchers, who favor its Python-like imperative coding
style, which makes it easy for developers to learn. Finally,
PyTorch offers extensive community support and documen-
tation and seamless deployment options.

3.2 TensorFlow

TensorFlow is an open ML library developed by Google.
TensorFlow handles TensorFlow Tensors, similar to PyTorch
ones, which can be operated on CUDA GPUs. Environments
implemented using TensorFlow Tensors can be vectorized
and hardware-accelerated, and TensorFlow provides an API
as part of its RL library TF-Agents [22] to directly create par-
allelized and accelerated environments. However, it has yet
to be broadly adopted. TensorFlow is known for its flexibility,
scalability, and production readiness. TensorFlow also bene-
fits from a very consistent ecosystem, with all main libraries
needed for ML research being developed and maintained in
the same package, except for neural network design, which is
done with Keras’ deep neural network API. However, we’ve
seen a decline in the use of TensorFlow in both the indus-
trial and research communities in the last few years, with re-
searchers preferring the flexibility of PyTorch. Still, Tensor-
Flow remains a dependable framework and offers extensive

community support and documentation.

3.3 JAX
JAX is a Python library for accelerator-oriented array

computation and program transformation, designed for high-
performance numerical computing, built on top of Google’s
XLA (Accelerated Linear Algebra) library, and developed by
researchers at Google and DeepMind. It’s known for its au-
tomatic differentiation capabilities, which make it well-suited
for optimization tasks such as training neural networks. JAX
is also popular in the research community due to its auto-
vectorization, device parallelism, and just-in-time compila-
tion abilities, allowing to seamlessly parallelize Python code
across multiple accelerators. JAX provides a NumPy-like in-
terface, making it easy to transition from traditional numer-
ical computing to more complex ML tasks. However, JAX
is not an ML library, and its usage for machine RL requires
dealing with various libraries, interoperable but independent
[23, 24]. JAX is newer than PyTorch and TensorFlow and is
celebrated for its immense scalability. However, it is at the
edge of AI research and requires keeping pace with a rapidly
evolving research ecosystem.

4 HARDWARE-ACCELERATED ENVIRONMENTS
RECOMMENDED FEATURES

Here, we elaborate on the design choices and features re-
quired in environment implementation to accelerate the train-
ing pipeline in RL and enable their use for multi-drone appli-
cations. Table 3 summarizes key features and lack thereof in
existing environments.

4.1 Vectorization
Vectorization is a technique in RL that enables parallel

simulations. In a training iteration, the rollout phase is typi-
cally the most time-consuming part. Vectorization mitigates
this by adding a batch dimension to the rollout phase, through
sampling multiple sub-environments at the same time. Vec-
torization is something that is now widely adopted in RL,
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with the most popular environment libraries such as Gym-
nasium [4] providing built-in vectorization.

4.2 Hardware acceleration

One straightforward method of vectorization is to sim-
ulate one environment instance per thread. However, this
approach has limitations. The scalability is restricted by
the number of physical cores in the system. Running a
large number of threads can lead to synchronization issues,
context-switching overhead, and memory bandwidth limita-
tions. Moreover, the frequent switching between CPU cores,
designed for sequential tasks, and GPUs, can be inefficient.
It is possible to alleviate this, by leveraging the parallel pro-
cessing and acceleration capabilities of GPUs.

GPU acceleration of the training environment is not
something new. Gym-pybullet-drones [6] uses GPU-based
rendering to speed up the simulation of multi-agent quad-
copter control tasks. Moreover, a CUDA port of the Atari
Learning Environment [26] was implemented by Dalton et al.
However, these solutions still require data to be transferred
back and forth between the CPU and the GPU when used in
a training pipeline, introducing performance bottlenecks.

It is possible to eliminate those inefficiencies by keeping
all the computations on the GPU [27]. GPU vectorization and
parallelization allow seamless scaling to tens of thousands of
parallel environments on accelerated hardware, speeding up
training by order of magnitudes.

4.3 Python based

Python is an interpreted language, that is mostly known
for its simplicity and rapidity of development rather than its
execution performance. Complex environments implemented
in Python require high CPU and memory requirements. The
first attempts to alleviate this issue have been to implement
the environments in C++. While it makes running the envi-
ronments on the CPU much faster, it cannot be parallelized
natively on the GPU, making it difficult to parallelize without
large clusters of CPU. Currently, GPU Parallelization meth-
ods are typically implemented in CUDA C, such as [26].
However, the use of C++ and CUDA C considerably reduces
their accessibility for most ML researchers who prefer Python
[28]. Python environments enable a wider adoption in the
MARL community.

New alternatives use Just-In-Time (JIT) compilation li-
braries, to compile Python code at execution. For exam-
ple, WarpDrive [25] provides a Python interface and environ-
ment wrappers for implementing environments in CUDA C or
Python using Numba, and automatically manages data trans-
fer between the host and the device. Numba [29], optimizes
Python code and allows easy Just-In-Time (JIT) compilation
for Python array and numerical functions, significantly speed-
ing up CPU code execution. It also supports CUDA GPU
compilation for a limited subset of Python code, but this re-
quires a solid understanding of the nuances and intricacies of
the CUDA C language, as the majority of Numba GPU API
functions map directly to Nvidia’s CUDA C language. Tran-

Environment Vectora GPUb Pythonc PyTorchd TensorFlowe JAXf Extensg Openh Compati Maintj

gymnasium [4] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓
PettingZoo [5] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Gym-Pybullet-drones [6] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓
EnvPool [7] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

MAgent (original) [8] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

brax [9] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
gymnax [10] ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

IsaacSIM [11] ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓
Gigastep [12] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

VMAS [13] ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓
JaxMARL [14] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Jumanji [15] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓
CrazyRL (NumPy) [16] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗

CrazyRL (JAX) [16] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

WarpDrive [25] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

a Vectorization
b GPU acceleration and parallelization
c Python-based
d PyTorch-based
e TensorFlow-based

f JAX-based
g Extensible
h Open-Source
i Compatible with common APIs
j Maintained

Table 3: Comparison of different RL environments hardware-acceleration features
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sitioning from CPU to GPU with Numba involves rewriting
Python functions to manage kernel invocation and thread po-
sitioning, which is not straightforward.

As explained in Section 3, hardware acceleration in the
field of machine learning in Python is instead typically done
by adopting one of the three leading frameworks: PyTorch
[1], TensorFlow [2], and JAX [3]. Vectorized environments
with a batch dimension can be implemented using either
PyTorch or TensorFlow tensors, allowing to parallelize and
running them on GPU. However, the number of available
PyTorch-based libraries is quite low, and no libraries were
found using TensorFlow. An environment implemented us-
ing JAX arrays can be automatically vectorized to run a batch
of this environment in parallel, and in comparison to the two
other frameworks there have been more initiatives for paral-
lelized environments using JAX presented in the literature,
as JAX is very popular among researchers for its paralleliza-
tion capabilities, and is seen as a successor of TensorFlow.
However, there is limited cross-compatibility between these
frameworks. Switching from one framework tensor represen-
tation to another requires moving the data on the CPU and
inevitably introduces overheads in the training pipelines.

Each of these frameworks offers nowadays some JIT
compilation functionality. Unlike Numba, JIT compilation
with these frameworks for hardware accelerators doesn’t re-
quire in-depth knowledge of low-level CUDA C details, and
streamlines the process of adapting code for execution on
a GPU automatically, simplifying the process. PyTorch of-
fers limited JIT compilation with the TorchScript language,
a typed subset of Python. It can be applied to any Python
function that manipulates PyTorch tensors and supports Py-
Torch functions and many Python built-in functions. This is
for example used in Isaac Gym [11], although the core func-
tionalities are coded in C++ and CUDA C, a Python interface
is provided for users to implement their own Python environ-
ment, and take advantage of TorchScript JIT to compile their
Python functions to lower level scripts which are added to
the parallelized training pipelines. TensorFlow allows using
the XLA compiler through tf.function. It can be applied to
any function that manipulates TensorFlow tensors, but it is
not broadly used outside the optimization of neural network
models and their training algorithms written with this frame-
work [22]. In comparison, JAX JIT compilation using the
XLA compiler is much more broadly adopted. It can be ap-
plied to any Python function that manipulates JAX arrays and
automatically optimizes computations on hardware accelera-
tors. One advantage over PyTorch is that JAX maintains most
NumPy functions and their signatures, making it easier to di-
rectly adapt native Python code.

4.4 Compatible with common APIs

The Gym API [4], developed by OpenAI, has been a stan-
dard in the field since its release in 2016 and is the most used
framework for coding simulators. DeepMind’s environment

API [23], known as dm env, was introduced later in 2019
but is also broadly used. These APIs have played a signifi-
cant role in shaping the development and standardization of
RL environments. The majority of RL algorithm libraries,
such as RLlib [30], Stable Baselines3 [31], and TorchRL [32],
use these standardized APIs therefore, ensuring RL environ-
ments’ compatibility with these standardized APIs is critical
to ensure an easy integration in the RL ecosystem.

To enable batched execution of transition simulations,
RL libraries are increasingly adopting stateless environments,
where instead of environments keeping track of the last phys-
ical state encountered and relying on it to simulate the tran-
sition from state to state, stateless environments expect to be
provided with the current state at each step, along with the ac-
tion taken. With PyTorch, TensorFlow, or JAX, an algebraic
operation can be seamlessly performed on scalars, vectors, or
tensors, allowing the state to be easily batched to run multi-
ple simulation steps in parallel. This is widely used in JAX
because methods written this way are functionally pure and
easily jittable. Gymnax [10] introduces such an API, where
the Gym API is made stateless, and Jumanji [15] does a sim-
ilar transformation for the dm env API.

4.5 Open-source, Extensible, and Maintained
An environment library should be open-sourced and of-

fer a high level of customization, to allow researchers and
developers to inspect the code, ensuring that the algorithms
and environments are implemented correctly and without hid-
den biases, to allow the research community to modify, adapt,
or create custom scenarios that address their use cases, or to
modify the code to specialize it for their application. Finally,
as the RL research is rapidly evolving it is crucial that the li-
brary is still maintained, to ensure compatibility with the de-
pendencies (in particular the last versions of Python) prevent
issues that could arise from outdated code, and keep up with
the advance and new features used in RL. Well-maintained
code is also often a sign of trust within the community, show-
ing that many users have adopted the library, are still con-
tributing to it, and can provide active support.

5 TRAINING ON HARDWARE-ACCELERATED
ENVIRONMENTS

Hardware-accelerated environments are increasingly
gaining prominence in the single RL ecosystem. However,
the existing RL libraries offering implementations of the
state-of-the-art RL algorithm often fall short of effectively
managing end-to-end training pipelines on accelerated hard-
ware. This problem is further aggravated with MARL, as
many of the most commonly used algorithm libraries lack
native support for MARL. Table 4 summarizes how existing
RL libraries support hardware-accelerated multi-agent envi-
ronments.

One of the most popular RL libraries, RLlib [30], is im-
plemented to facilitate highly distributed RL workloads. It
can scale training from a single core to many thousands of
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RL Libraries Vectora GPUb Multi-GPUc APId MARLe Audiencef PyTorchg TensorFlowh JAXi

Stable Baselines3 [31] ✓ limited limited gym ✗ D ✓ ✗ limited
RLlib [30] ✓ ✗ ✗ gym ✓ D ✓ ✓ ✗

TorchRL [32] ✓ ✓ ✓ gym* ✓ R&D ✓ ✗ limited
TF-Agents [22] ✓ ✓ ✗ dm env ✗ D ✗ ✓ ✗

Acme [33] ✓ ✓ ✗ dm env ✗ R ✗ ✓ ✓
CleanRL [34] ✓ with JAX ✗ any limited R ✓ ✗ limited

PureJaxRL [35] ✓ ✓ ✗ gymnax* ✗ R ✗ ✗ ✓
JaxMARL [14] ✓ ✓ ✗ gymnax* ✓ R ✗ ✗ ✓

Mava [36] ✓ ✓ ✓ Jumanji ✓ R ✗ ✗ ✓

* provides wrappers for a limited number of additional APIs
a Handles vectorized environments
b Handles environments parallelized on GPU
c Handles environment parallelized on multiple GPUs
d Supported environment API
e Natively support for MARL

f Target Audience (R) Researchers (D) Developers
g PyTorch-based
h TensorFlow-based
i JAX-based

Table 4: Comparison of different RL libraries support for hardware-accelerated multi-agent environments

cores in a cluster. Yet, it does not support end-to-end training
pipelines on accelerated hardware as even if the environment
was running on a hardware accelerator, the training pipeline
requires the rollout data to be processed on the CPU, before
sending it back to the GPU, where the agents are trained.
These transfers back and forth introduce large overhead in
the training pipeline.

Another difficulty is, the limited cross-compatibility be-
tween the three leading frameworks used for hardware accel-
eration: PyTorch [1], TensorFlow [2], and JAX [3]. Switch-
ing from one framework tensor representation to another re-
quires moving the data on the CPU and inevitably introduces
some overhead in the training pipeline. This means that if
an RL environment library adopts one of these frameworks,
it will face compatibility issues with RL algorithms that are

designed for the other frameworks. This limits the mix-and-
match options for RL environments and algorithms libraries.

The most popular RL libraries, such as Stable Baselines3
[31], are implemented in PyTorch or TensorFlow, which
means that they do not support JAX-based environments na-
tively, and require converting JAX arrays to their tensor rep-
resentation to be able to process them. This is the case also
with TorchRL [32], while it natively only supports end-to-
end hardware-accelerated pipelines for PyTorch-based envi-
ronments such as VMAS [32, 13], it provides a generic en-
vironment API and wrappers to support other existing sim-
ulators, such as Jumanji environments easily [15], which is
JAX-based. However, JAX-based (and TensorFlow-based)
environments inevitably suffer from a consequent overhead
due to the conversion from JAX array to PyTorch Tensors.

Single-Agent RL MARL

RL Libraries DQL DDPG PPO SAC IPPO MAPPO IQL MADDPG QMIX SAC

Stable Baselines3 [31] FF - R FF - R FF - R FF - R - - - - - -
RLlib [30] FF - R FF - R FF - R FF - R FF - R FF - R FF - R FF - R - FF - R

TorchRL [32] FF FF FF FF FF FF FF - R FF FF FF
TF-Agents [22] FF - R FF - R FF - R FF - R - - - - - -

Acme [33] FF FF FF FF FF - - - - -
CleanRL [34] FF FF FF - R FF FF FF - - - -

PureJaxRL [35] FF - FF - R - - - - - - -
JaxMARL [14] - - - - FF - R FF - R R - R -

Mava [36] - - - - FF - R FF - R R - - FF

FF — The library provides a Feed-Forward version of the baseline algorithm
R — The library provides a Recurrent version of the baseline algorithm

Table 5: Comparison of how RL libraries cover the existing state-of-the-art RL and MARL algorithms
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This lack of support for JAX-based environments by the
most used and maintained RL libraries led the research com-
munity to create their own RL and MARL algorithms li-
braries implemented in JAX, such as PureJaxRL [35], Jax-
MARL [14] and Mava [36]. Often, while implementing
and providing new environment libraries in JAX, the re-
search community provides their own re-implementation of
the baseline algorithms in JAX [14, 15, 36]. This results in
an uneven offer of JAX implementations of the state-of-the-
art RL algorithms. Often, these implementations lack cer-
tain training options or features, and their design choices are
shaped by the benchmarked environments that accompany
the algorithms. For example, the MAPPO implementation
of Mava does not use value normalization, even though it is a
recommended feature that has been shown to never hurt train-
ing and often improves the final performance of MAPPO sig-
nificantly [20]. Again, this problem is worse with MARL al-
gorithms. In particular, existing MARL libraries in JAX often
lack the recurrent versions of the baselines algorithms, which
are used to address partial observability in Dec-POMDPs, an
intricate aspect of MARL problems such as the control of
swarms of drones. The JAX ecosystem still lacks a unified,
reliable, tested, and documented collection of RL algorithms.
Table 5 provides a summary of how existing RL libraries
cover the existing state-of-the-art RL and MARL algorithms.

6 CONCLUSION

The potential of vectorizable environments to leverage
modern GPUs for parallel environment rollout promises a
substantial boost in computational efficiency. However,
the current landscape of RL algorithm libraries and frame-
works falls short of effectively managing end-to-end train-
ing pipelines on accelerated hardware. Some initiatives have
been introduced for parallelized and hardware-accelerated
environments using PyTorch and JAX to a larger extent, while
TensorFlow usage has been on the decline. However, the
limited cross-compatibility between these frameworks hin-
ders the seamless mix-and-match of RL environments and
algorithm libraries, as switching from one framework ten-
sor representation to another requires moving the data on the
CPU and inevitably introduces some overhead in the train-
ing pipeline. This forces the research community to imple-
ment RL algorithm libraries for each framework, but while
the most popular RL algorithm libraries are implemented in
PyTorch and TensorFlow they have yet to fully adopt GPU-
parallelized environments, and in contrast, the libraries im-
plemented in JAX natively handle parallelized environments
but lack maturity. A problem accentuated in MARL, as it is a
specialized branch of RL research.
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