
ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-8 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Evolving Spiking Neural Networks to Mimic PID
Control for Autonomous Blimps

Tim Burgers
Delft University of Technology

Delft, The Netherlands

Stein Stroobants
Delft University of Technology

Delft, The Netherlands
s.stroobants@tudelft.nl

Guido C.H.E. de Croon
Delft University of Technology

Delft, The Netherlands
g.c.h.e.decroon@tudelft.nl

Abstract—In recent years, Artificial Neural Networks (ANN)
have become a standard in robotic control. However, a signif-
icant drawback of large-scale ANNs is their increased power
consumption. This becomes a critical concern when designing
autonomous aerial vehicles, given the stringent constraints on
power and weight. Especially in the case of blimps, known
for their extended endurance, power-efficient control methods
are essential. Spiking neural networks (SNN) can provide a
solution, facilitating energy-efficient and asynchronous event-
driven processing. In this paper, we have evolved SNNs for
accurate altitude control of a non-neutrally buoyant indoor
blimp, relying solely on onboard sensing and processing power.
The blimp’s altitude tracking performance significantly improved
compared to prior research, showing reduced oscillations and a
minimal steady-state error. The parameters of the SNNs were
optimized via an evolutionary algorithm, using a Proportional-
Derivative-Integral (PID) controller as the target signal. We
developed two complementary SNN controllers while examining
various hidden layer structures. The first controller responds
swiftly to control errors, mitigating overshooting and oscillations,
while the second minimizes steady-state errors due to non-
neutral buoyancy-induced drift. Despite the blimp’s drivetrain
limitations, our SNN controllers ensured stable altitude control,
employing only 160 spiking neurons.

Index Terms—Spiking Neural Networks (SNN), Leaky-
Integrate-and-Fire model, Neuromorphic Control

I. INTRODUCTION

Throughout history, humans have been fascinated by how
animals gracefully and precisely navigate complex environ-
ments. This fascination has inspired efforts to understand
the brain’s computational processes behind such behavior,
leading to the development of Artificial Neural Networks
(ANN). These ANNs represent the neural processes using
simplified mathematical models. Their ability to approximate
complex non-linear functions makes them highly effective
in controlling complex systems, such as quadrotors [1; 2].
However, as the size of ANNs grow, both response latency and
computational demands increase. The latter poses particular
challenges for robotic applications with restricted onboard
energy capacity, such as flying robots. A solution may be
found in the information transmission methods employed by
biological brains. ANNs rely on continuous-valued signals,
whereas the biological brain employs sparse spatial-temporal

This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA8655-20-1-7044.

command

PD

Error
+

Motor

I

Fig. 1. The proposed SNN altitude controller for the blimp, where [t0,t1,t2]
indicates time instances of the blimp’s altitude while approaching a setpoint,
marked by the dashed line.

”spike” signals—brief, rapid increases in neuron voltage—for
data encoding and transmission.

There are neural networks that use this spike-based ap-
proach to transmitting information, called a Spiking Neural
Network (SNN) [3]. These more biologically plausible neural
networks show potential for energy-efficient and low-latency
controllers [4]. This fact was demonstrated in a study by Vitale
et al. [5], where an SNN controller in a fully neuromorphic
control loop outperformed a conventional control loop on
power consumption and control latency when tracking the roll
angle of a bench-fixed 1 DoF birotor. However, the application
of SNN controllers in robotics is still in its early stages of
development. One of the biggest challenges is the availability
of suitable training algorithms. The SNN’s temporal dynamics,
sparse spiking activity, and non-differentiable spike signal
make most existing ANN training algorithms unsuitable [6].
Recent research has enabled the use of error backpropagation
for SNNs by means of surrogate-gradient algorithms [7].
Nevertheless, training SNNs using these gradient-based al-
gorithms is still difficult due to the susceptibility to local
minima, exploding/vanishing gradient, and sensitivity to initial
conditions [8].

Due to the increased training complexity of SNNs compared

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 72



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-8 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

to non-spiking counterparts, practical applications of SNNs
in the robotic control domain are still limited. Designing
a fully neuromorphic SNN controller to emulate low-level
controllers, such as the Proportional-Integral-Derivative (PID)
control, still remains a complex task. Recent research showed
SNNs performing differentiation and integration within the
network, by manually configuring neuron connections and
weights [9; 10; 11]. In these studies, the controllers were
implemented on Intel’s Loihi neuromorphic processor, show-
casing the promise of neuromorphic hardware by exhibiting
very low latencies [12]. In Zaidel et al. [13], multiple popu-
lations with pre-determined network parameters were used to
implement all three pathways of the PID controller to control
a 6 Degrees of Freedom (DoF) robotic arm. The integral
pathway was implemented using a fully recurrent population
of neurons, while differentiation was achieved by using a
slow and fast time constant for two populations. Although
the integral controller succeeded in reducing the steady-state
error, it was unable to completely eliminate it. In another study,
spiking neurons were trained to replace the rate controller of
a tiny quadrotor, the Crazyflie [14]. Integration in the SNN
controller was achieved through discretized Input-Weighted
Threshold Adaptation (IWTA), where the threshold depends
on the previous layer’s spiking activity. The training process
had limitations because it relied partially on predetermined
connections and grouped network parameters.

In this work, we investigate the different mechanisms, recur-
rency and IWTA, used in prior SNN PID research that enabled
differentiation and/or integration. For each mechanism, we
evolve an SNN to control the altitude of a real-world indoor
blimp. The blimp is an interesting test platform for the SNN
controller, allowing validation of all components of the PID
controller. The changing buoyancy over time requires a good
integrator to be present. Moreover, due to the high delays and
slow system dynamics of a blimp, a high proportional gain
is necessary in the reference PID controller. This reduces the
blimp’s rise time, requiring a strong derivative in the con-
troller’s output to prevent overshoot and oscillations. In Gon-
zalez et al. [15], an open-source indoor blimp was designed
and used as a test vehicle for an evolved neuromorphic altitude
controller, showing adequate tracking of the reference signal.
However, even after including an additional non-spiking PD
controller to the output of the SNN controller, there were still
oscillations present of approximately ± 0.3m. Additionally,
the SNN was only trained on a neutrally buoyant blimp. Slight
changes in the buoyancy of the blimp would cause a steady
state error, which the controller was unable to eliminate.

We build further on this research, presenting here the
following contributions: 1) We developed a fully neuromorphic
height controller for a blimp (visualized in Figure 1), using an
evolved SNN of only 160 neurons that is able to minimize the
overshoot and oscillations while also removing the steady-state
error caused by the buoyancy of the blimp. 2) We analyze the
individual and combined influence of recurrent connections
and IWTA on the performance of the SNN controller 3) We
made improvements to the hardware components of the open-

source blimp, improving the onboard computational power and
increasing the accuracy of the height measurements.

II. METHODOLOGY

The SNN controller consists of three layers of neurons,
where all parameters are optimized using an evolutionary
algorithm to mirror the output of a tuned PID controller.
The Proportional-Derivative (PD) controller’s rapid dynamics
demand fast time constants, while the integral controller
relies on slower dynamics and, thus, slow time constants. To
facilitate the learning process, we split the controller into two
separate parts based on the required time constants to model
each component. After completing the training process, the
evolved controllers are used to control the altitude of a helium-
filled blimp. Detailed discussions on the SNN’s structure,
parameters, experiment setup, and the evolutionary training
algorithm used in this study follow below.

A. Spiking Neural Network Controller

We use current-based Leaky-Integrate and Fire (LIF) neu-
rons with a soft reset for the threshold (ϑ). The discretized
equations that describe the dynamics of the three states of the
neuron (synaptic current i(t), membrane potential v(t) and
spike train s(t)) are described as follows:

ii(t) = τ syni ii(t− 1) +
∑

Wijsj(t) (1)

vi(t) = τmem
i vi(t− 1) + ii(t)− si(t− 1)ϑi (2)

si(t) = H (vi(t)− ϑi) (3)

where subscript i and j denote the post- and presynaptic
neuron respectively. The discretized time constants, known
as the decay parameters, of the synapses and the membrane
potential are respectively referred to as τsyn and τmem. The
spiking behavior of a neuron is modeled using the Heaviside
step function H , which outputs a spike when the membrane
potential exceeds the threshold.

Fig. 2. The basic structure of the SNN controller. The encoding layer has an
additional bias (b) added to the input current.

The basic structure of a spiking neural network controller
is schematically depicted in Figure 2. The input weights,
indicated by W e, Wh and W d, are linked to the encoding,
hidden and decoding layers, respectively. The encoding layer
is responsible for translating the floating-point input into

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 73



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-8 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

a sequence of spikes, and conversely, the decoding layer
performs the reverse operation.

The input to the network is the error of the controlled
state. After applying the encoding weights and biases, the
error signal is directly used as the synaptic current for the
encoding neuron (τsyn = 0). To facilitate the training of the
encoding layer, we paired neurons with shared bias and flipped
weight sign. This results in symmetric encoding, ensuring
similar spiking patterns for both positive and negative errors.
The effect that the input weight and bias have on the spiking
behavior of a LIF neuron is presented in Figure 3. The
encoding layer incorporates a bias to achieve spike activity
for the encoding of error values close to zero, which would
otherwise be impossible.

Encoded input value

Av
er

ag
e 

Sp
ik

in
g 

Fr
eq

ue
nc

y 
[s

pi
ke

/ti
m

es
te

p]

0.50.25 0.750.0-0.25

0.5

1.0

+b

decr.W

Fig. 3. Influence of the input weight and bias on the spiking frequency of a
LIF neuron.

We study the effect of using different types of structures for
the hidden layer of the SNN controller in this work. The most
basic type of hidden layer (LIF) is depicted in Figure 2. In
addition to the basic structure, we evaluated the influence of
recurrency [13; 16] and Input-Weighted Threshold Adaptation
(IWTA) [14], as both these network structures demonstrated
their essential role in enabling integration within the SNN. We
focused solely on threshold adaptation linked to the incoming
spiking activity rather than the hidden neuron’s activity itself.
An overview of the different hidden layer structures is shown
in Figure 4. In contrast to the original implementation in [14],
the threshold for the IWTA-LIF neurons is modeled using a
decay term (τ th), where the threshold converges back to a
base value (ϑ), after an increase/decrease (W th) caused by an
incoming spike. This method of implementing IWTA adds new
dynamics to the threshold and increases the solution space.

The spiking neural network controller is decoded using a
single leaky-integrator neuron, that calculates the exponential
moving average of the spikes in the hidden layer.

B. Real-World Experiment

To validate the performance of the SNN controller on
a real-world application, we implemented an SNN altitude
controller for an open-source micro-blimp developed in [15].
The combination of the buoyancy-caused drift and slow
system dynamics make the blimp a useful test vehicle for

V

V

V

V

Non-Recurrent Recurrent

N
on
-A
da
pt
iv
e

A
da
pt
iv
e

R-LIFLIF
IWTA-LIF R-IWTA-LIF

V

V

V

V

+

+ +

+

_

__

_

Fig. 4. Visualization of the different hidden layer structures. The two left and
right circles represent the encoding and the hidden neurons respectively.

this research. The input of the SNN height controller is the
difference between a reference altitude and the onboard lidar
measurement, which makes it a fully on-board closed-loop
control system. The output of the SNN is the motor command,
u ∈ [−3.3, 3.3], where u < 0 indicates downward and u > 0
upwards movement. The blimp’s control system consists of
two coreless direct current (DC) motors attached to a 180-
degree rotating shaft, which enable the rotors to push the
blimp both up- and downwards. A visual representation of the
blimp and its hardware components is provided in Figure 5.
Two improvements have been made to the blimp’s hardware
setup. Firstly, to improve the altitude tracking ability, we
implemented a LiDAR sensor, the TFmini S LiDAR-module,
which significantly increased the accuracy from ± 20cm to ±
1cm. Secondly, the Raspberry Pi Zero 2 W, running on Ubuntu
20.04, replaced its predecessor to increase the processing
power and prevent software compatibility issues. The total
weight of all hardware components attached to the blimp is
140g. In order to ensure smooth communication between all
system components, we have used the Robot Operating System
(ROS1) framework. The control loop runs at a rate of 10 Hz.

A
B

Fig. 5. The open-source micro-blimp used for the real-world experiments [15].
Two adjustments made on the blimp are: A) TFmini S LiDAR-module B)
Raspberry Pi Zero 2 W.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 74



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-8 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

C. Evolutionary Training Algorithm

The training process for the SNN controller employs an
evolutionary algorithm, consisting of two recurring steps: pop-
ulation creation and evaluation, with each cycle representing
one generation of the evolution. In the first step, a set number
of individuals forms the population, each representing a unique
controller with slightly varying parameters. The second step
ranks these individuals based on performance via a cost
function, and this information guides the creation of the new
population. Further details for each step are discussed below.

Every training loop was executed on the DelftBlue super-
computer, running on 20 cores for 50,000 generations with 50
individuals [17]. To prevent overfitting, we randomly sampled
one of the 100 training datasets to evaluate each generation.
Additionally, both the size and the frequency of the step inputs
used in each dataset were varied to enhance the diversity of
the training data. We conducted a total of 30 training loops
for each combination of controller type (2) and hidden layer
structure (4), resulting in a total of 240 training sessions. Each
controller is limited to 80 neurons to showcase the potential
of small-scale networks for neuromorphic control.

1) Population Creation: For the creation of a new popu-
lation, we have used a Covariance Matrix Adaptation Evolu-
tionary Strategy (CMA-ES) [18]. CMA-ES is a distribution-
based optimization algorithm that iteratively adjusts the mean
and covariance matrix of a multi-variate Gaussian distribution,
from which all network parameters of each individual are
sampled.

The CMA-ES is implemented using the Evotorch Python
library [19]. Every network parameter that needs to be evolved
is initialized using the mean and standard deviation of a
Gaussian distribution. Strict-bounded parameters, such as the
decay constants in the neuron model, are constrained by
rejecting and resampling. The initial mean is set by sampling
from a uniform distribution within parameter bounds, while the
standard deviation is set to 1/10th of the parameter’s range.
An overview of all trained parameters including the bounds
is provided in Table I, where W r represents the recurrent
weights.

TABLE I
OVERVIEW OF ALL PARAMETERS AND BOUNDS USED TO EVOLVE THE

SNN, WITH ADDITIONAL PARAMETERS IN THE HIDDEN LAYER FOR
∗RECURRENCY AND †IWTA

Param. Size Bounds Param. Size Bound

Enc.

W e N [-2, 2]

H
id

de
n

Wh 2N [-2, 2]
b N [-1, 1] τsyn N [0, 1]
τmem N [0,1] τmem N [0, 1]
ϑ N [0,10] ϑ N [0, 10]

∗W r NxN [-1, 1]

Dec. W d N [-1,1] †τ th N [0,1]
τmem N [0,1] †W th NxN [-1, 1]

2) Population Evaluation: The performance of each indi-
vidual SNN controller is determined by comparing the output
of the SNN controller (u) to the output of a tuned PD
or integral controller (û). The SNN is tasked to learn the
mapping between the input signal (e) to the output of the

target controller (û). The discretized equation that describes
the PID response is provided below:

ûk = Kpek +Kd
ek − ek−1

T︸ ︷︷ ︸
PD controller

+Ki(

k∑

k=0

Tek)

︸ ︷︷ ︸
Integral controller

(4)

where Kp, Ki, and Kd refer to the proportional, integral and
derivative gains respectively and T is denoted by the sampling
period. Both the input error signal and the target controller
response are recorded in a dataset.

To quantify the performance of the SNN compared to the
target controller, the Mean Absolute Error (MAE) was used as
the main term in the cost function. The MAE was used instead
of the mean square error (MSE) to prevent over-penalization
of the error that is created during the transient response to a
step input because this led to more oscillations in the steady
state. Additionally, the cost function was augmented with the
Pearson Correlation Coefficient (PCC) [20], denoted by ρ, to
incentivize that the sign of the output of the SNN and PD/I
controllers is equal. The PCC measures the linear correlation
between two signals, ranging from -1 to 1, where the latter
indicates a fully linear relation. Since the fitness function is a
minimization function, the PCC is included by adding 1 − ρ
to the MAE. This results in the following cost function that
was used in the population evaluation step of the evolutionary
training process:

L(u, û) = MAE(u, û) + (1− ρ(u, û)) (5)

D. Dataset Generation

The methods used to gather the test and training data for
each controller are discussed below.

1) PD controller: To successfully train the PD SNN con-
troller, we need a broad spectrum of error signals. Therefore,
we used a semi-randomly tuned PID controller on the neutrally
buoyant real-world blimp. The error signal of these recordings
is used as the SNN input data of the dataset. The target signal
for the training algorithm is generated by passing the recorded
error signal through a PD controller with the tuned gains for
the blimp’s altitude controller.

2) Integral controller: The Integral SNN has to learn to
integrate the error within the SNN itself. For this training
process, the decay parameter of the decoding neuron is pur-
posely bound to ensure a quick decay (eg. [0-0.3]) in order to
prevent the algorithm from converging to a slow decay. A slow
decoding decay parameter would imply that the integration
only happens in the decoding neuron, instead of in the hidden
layer.

If the buoyancy remains constant throughout the training
process of the integral controller, the network might learn to
add a bias to counteract the buoyancy. Therefore we must
adjust the buoyancy during training to ensure that the network
learns to integrate information over time. Instead of recording
multiple datasets with varying buoyancy, we decided to train
the Integral controller on a model where we could also change

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 75



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-8 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

the ”buoyancy” within a single dataset to facilitate the learning
process.

The blimp was modeled by the double integrator control
problem and controlled using a PID controller. The integral
gain was set to match that of the tuned real-world blimp, while
the PD gains were adjusted to align the model’s dynamics
approximately with those of the tuned PID-Blimp system. In
the double integrator system, the output of the controller, u(t)
is directly proportional to the second derivative of the state
plus an additional bias: ẍ(t) = u(t) + b . The bias simulates
the level of buoyancy of the blimp. Every time a step input
is received, the bias is randomly sampled (U(−4, 4)). Each
dataset consists of 5 step inputs maintained for 50s.

III. RESULTS

The first subsection displays the training outcome of both
SNN controllers using a test dataset, followed by the assess-
ment of their performance on an actual blimp. The results also
contain a performance analysis of various neural mechanisms
within the hidden layer.

A. Training of the SNN Controllers
1) PD SNN Controller: The result of the PD training

process is provided in Figure 6, showing a single step response
from the test dataset. The solid red line represents the SNN’s
target, while the dashed red line depicts the proportional con-
troller. The P controller is included to visualize the additional
effect of the derivative. Initially, all spiking PD controllers
show clear influences of the derivative, as they match the target
signal. However, after the initial damping of the proportional
output, the controllers start to diverge. To prevent overshoot
and oscillations, the derivative controller should counteract
the proportional controller when the state is approaching the
setpoint, which happens around 4 seconds in the Figure. The
only controller that counteracts the P controller sufficiently
is the LIF SNN. Based on this analysis and the lowest loss
value across the entire test dataset, shown in Table II, we
opted to use the LIF SNN for the blimp’s altitude controller.
The larger solution space for the recurrent and IWTA neuron
structures makes the search space more complex and leads to
local minima.

0 1 2 3 4 5 6 7 8 9
Time [s]

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ot

or
 c

om
m

an
d 

[-
]

LIF
IWTA-LIF
R-LIF
R-IWTA-LIF
Target PD
P reference

Fig. 6. The moving average of the step responses of all evolved SNN
controllers compared to a PD target signal using a test dataset. The LIF shows
derivative action by damping the command.

TABLE II
LOSS FOR SNN PD CONTROLLERS (u) ON COMPLETE TEST DATASET

(500S) USING TUNED PD AS TARGET (û)

LIF IWTA-LIF R-LIF R-IWTA-LIF
L(u, û) 0.68 0.74 0.74 0.73

2) Integral SNN Controller: The result of the integral
training process is provided in Figure 7, showing the response
of the different hidden layer mechanisms to a test dataset.
The LIF SNN failed to learn to integrate, hence, it is excluded
from the figure. All three spiking controllers following the test
signal, without a clear standout performer. To see how well
the controllers perform in the real-world, they are all tested
on the indoor blimp.

100 200 300 400 500
Time [s]

−2

−1

0

1

2

3

M
ot

or
 c

om
m

an
d 

[-
]

IWTA-LIF
R-LIF
R-IWTA-LIF
Target I

Fig. 7. The moving average of the step responses of three evolved SNN
controllers compared to a integral target signal using a test dataset, with a
changing bias every step input.

B. Performance of SNN controlling Real-World Blimp

To analyze the performance of each controller separately,
we first test the PD SNN controller using a neutrally buoyant
blimp. Afterward, we added some weight to the blimp to make
it negatively buoyant. The negatively buoyant blimp is used
first to evaluate the performance of the SNN I controllers,
followed by the evaluation of the fully spiking controller.

1) PD control of neutrally buoyant blimp: We assess the
performance of the PD SNN controller with LIF hidden struc-
ture by comparing it to a tuned conventional PD controller.
The tracking accuracy is tested using five different step sizes
∆h=[1,0.5,0,-0.5,-1], maintained for 50s each and the results
are shown in Figure 8. Both the conventional PD and the SNN
show small oscillations, ±6 cm, around the setpoint. These
oscillations are caused by the discretized mapping of the motor
command to the actual voltage sent to the motors using PWM.
This causes a deadzone to be present in the motor command
signal, which is the region of the motor commands, u =[-
0.1,0.1], that does not result in the actuation of the rotors.

2) Integral control of negatively buoyant blimp: To isolate
the effect of the spiking integrator, we used the non-spiking PD
controller in combination with the spiking integrator to control
the negatively buoyant blimp. The result of two-step responses

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 76



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-8 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

0 10 20 30 40 50 60 70
Time [s]

−1.0

−0.5

0.0

0.5

1.0

H
ei

gh
t [

Δm
]

PD
LIF
Target

Fig. 8. Real-world step responses of the altitude of the neutrally buoyant
blimp using a conventional PD control and an SNN controller with no
recurrency or IWTA in the hidden layer. Each setpoint was tested eight times
for every controller and the average is shown by the thick line.

is shown in Figure 9, where the setpoint was changed after 70
seconds. When analyzing the steady-state error, we take the
average over the last 10 seconds of each step. The steady-state
error of the IWTA-LIF (±2 cm) is significantly smaller than
the ones for the R-LIF and R-IWTA-LIF (±5 cm). Despite
the small oscillations caused by the LIF SNN, we decided to
use this spiking integrator for the full spiking controller due
to the minimal steady-state error.

0 20 40 60 80 100 120 140
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t [

m
]

PD + IWTA-LIF
PD + R-LIF
PD + R-IWTA-LIF
Target

Fig. 9. Real-world step responses of the altitude of the negatively buoyant
blimp using a conventional PD controller and different spiking integrators.
The average over five runs is shown for each controller.

3) Full spiking control of negatively buoyant blimp: The
combination of both the spiking PD (LIF) and integral (IWTA-
LIF) controller is shown in Figure 10. We analyzed the step re-
sponse for the blimp using different setpoints h=[0.5,1,1.5]m,
maintained for 70s. The combined SNN controller demon-
strates effective altitude control while minimizing the steady-
state error to ±3cm. However, the SNN controller shows
relatively large initial oscillations when receiving a downward
step input, compared to the upward steps. The oscillations
result from the delay introduced when the rotors must make a
180-degree turn during direction changes. Given the blimp’s
negative buoyancy, continuous upward thrust is essential for
stability. In cases of upward step inputs, the rotors constantly

push the blimp upwards. Conversely, when a lower setpoint is
used, the blimp is initially pushed downwards by the rotor
before pushing back up to attenuate the movement. This
difference in overshoot is also visible for the PID controller,
with an average overshoot of 14cm for upward steps and 20cm
for downward steps.

0 50 100 150 200 250 300 350
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

H
ei

gh
t [

m
]

PID
PD
SNN Controller
Target

Fig. 10. Real-world multi-step response of the altitude of the negatively
buoyant blimp using a non-spiking PID & PD controller and the SNN
controller, which is the combination of the SNN PD (LIF) and the SNN
integral (IWTA-LIF) controller. The average over five runs is shown for each
controller.

IV. CONCLUSION

In this work, we evolved a spiking neural network (SNN)
that successfully controls the altitude of a non-neutrally
buoyant indoor blimp. The SNN parameters were optimized
through an evolutionary algorithm, facilitating extensive ex-
ploration of the solution space. This exploratory training
approach allowed for an in-depth analysis of various hidden-
layer configurations, recurrency and Input Weighted Threshold
Adaptation (IWTA), for the Leaky-Integrate and Fire (LIF)
neuron model. As a result, we developed two complementary
SNN controllers which, when combined, achieved accurate
tracking of the reference state. The first controller exhibited
rapid response to control errors while effectively mitigating
overshoot and large oscillations, after being trained on a tuned
PD controller for the blimp. In parallel, the second controller
was designed to minimize steady-state errors arising from the
blimp’s non-neutral buoyancy-induced drift. This controller
learned to perform integration of the error using IWTA within
the hidden layer of the network.

Despite the limitation within the blimp’s current drivetrain
configuration, the developed SNN controllers have showcased
their ability to maintain stable altitude control, employing just
160 spiking neurons. All processing and sensing is performed
onboard the blimp, with the SNN running on the Raspberry
Pi’s CPU. Future research will focus on the completion of
the neuromorphic control loop, integrating event-based sen-
sors with neuromorphic processors. This integration aims to
fully demonstrate the potential of neuromorphic computing in
robotic control.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 77



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-8 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

REFERENCES

[1] D. Zhang, A. Loquercio, X. Wu, A. Kumar, J. Malik,
and M. W. Mueller, “A Zero-Shot Adaptive Quadcopter
Controller,” 9 2022.

[2] M. Heryanto, H. Suprijono, B. Yudho, and B. Kusumop-
utro, “Attitude and altitude control of a quadcopter using
neural network based direct inverse control scheme,”
Advanced Science Letters, vol. 23, pp. 4060–4064, 05
2017.

[3] W. Maass, “Networks of spiking neurons: The third
generation of neural network models,” Neural Networks,
vol. 10, no. 9, pp. 1659–1671, 1997.

[4] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and
A. C. Knoll, “A survey of robotics control based on
learning-inspired spiking neural networks,” Frontiers in
Neurorobotics, vol. 12, 2019.

[5] A. Vitale, A. Renner, C. Nauer, D. Scaramuzza, and
Y. Sandamirskaya, “Event-driven Vision and Control for
UAVs on a Neuromorphic Chip,” in Proceedings - IEEE
International Conference on Robotics and Automation,
vol. 2021-May, pp. 103–109, Institute of Electrical and
Electronics Engineers Inc., 2021.

[6] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P.
Maguire, and T. M. McGinnity, “A review of learning in
biologically plausible spiking neural networks,” Neural
Networks, vol. 122, pp. 253–272, 2020.

[7] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate Gra-
dient Learning in Spiking Neural Networks: Bringing the
Power of Gradient-based optimization to spiking neural
networks,” IEEE Signal Processing Magazine, vol. 36,
pp. 51–63, 11 2019.

[8] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and
A. C. Knoll, “A survey of robotics control based on
learning-inspired spiking neural networks,” Frontiers in
Neurorobotics, vol. 12, 2019.

[9] R. K. Stagsted, A. Vitale, A. Renner, and L. B. Larsen,
“Event-based PID controller fully realized in neuromor-
phic hardware: A one DoF study,” in IEEE International
Conference on Intelligent Robots and Systems, vol. 2,
pp. 10939–10944, 7 2020.

[10] R. K. Stagsted, A. Vitale, A. Renner, and L. B. Larsen,
“Towards neuromorphic control: A spiking neural net-
work based PID controller for UAV,” in Robotics: Sci-
ence and Systems XVI, vol. 1, Robotics: Science and
Systems Foundation, 1 2020.

[11] S. Stroobants, J. Dupeyroux, and G. De Croon, “Design
and implementation of a parsimonious neuromorphic PID
for onboard altitude control for MAVs using neuromor-
phic processors,” in ICONS’22 Proceedings, vol. 2657,
pp. 1–9, CEUR-WS, 2022.

[12] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao,
S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain,
Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty,
S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. H.
Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A Neu-

romorphic Manycore Processor with On-Chip Learning,”
IEEE Micro, vol. 38, pp. 82–99, 1 2018.

[13] Y. Zaidel, A. Shalumov, A. Volinski, L. Supic, and
E. Ezra Tsur, “Neuromorphic NEF-Based Inverse Kine-
matics and PID Control,” Frontiers in Neurorobotics,
vol. 15, 2 2021.

[14] S. Stroobants, C. De Wagter, and G. C. H. E. de Croon,
“Neuromorphic Control using Input-Weighted Threshold
Adaptation,” vol. 1, Association for Computing Machin-
ery, 2023.

[15] M. Gonzalez-Alvarez, J. Dupeyroux, F. Corradi, and
G. C. De Croon, “Evolved neuromorphic radar-based
altitude controller for an autonomous open-source
blimp,” Proceedings - IEEE International Conference on
Robotics and Automation, pp. 85–90, 2022.

[16] H. Qiu, M. Garratt, D. Howard, and S. Anavatti, “To-
wards crossing the reality gap with evolved plastic neu-
rocontrollers,” in GECCO 2020 - Proceedings of the
2020 Genetic and Evolutionary Computation Conference,
vol. 1, pp. 130–138, Association for Computing Machin-
ery, 6 2020.

[17] Delft High Performance Computing Centre
(DHPC), DelftBlue Supercomputer (Phase 1), 2022.
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1.

[18] N. Hansen, “The CMA Evolution Strategy: A Tutorial,”
pp. 1–39, 2016.

[19] N. E. Toklu, T. Atkinson, V. Micka, P. Liskowski,
and R. K. Srivastava, “EvoTorch: Scalable Evolutionary
Computation in Python,” pp. 1–25, 2023.

[20] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson
Correlation Coefficient,” in Noise Reduction in Speech
Processing, pp. 1–4, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 78


	Papers
	Evolving Spiking Neural Networks to Mimic PID Control for Autonomous Blimps


