
ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-34 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Swarm-in-Blocks: Simplifying Drone Swarm
Programming with Block-Based Language

Agnes Bressan de Almeida
João Aires Correa Fernandes Marsicano

University of São Paulo
São Carlos, Brazil

joao.aires.marsicano@usp.br

Abstract—Swarm in Blocks, originally developed for Copter-
Hack 2022, is a high-level interface that simplifies drone swarm
programming using a block-based language. Building on the
Clover platform, this tool enables users to create functionalities
like loops and conditional structures by assembling code blocks.
In 2023, we introduced Swarm in Blocks 2.0, further refining the
platform to address the complexities of swarm management in a
user-friendly way.

As drone swarm applications grow in areas like delivery,
agriculture, and surveillance, the challenge of managing them,
especially for beginners, has also increased. The Atena team
developed this interface to make swarm handling accessible
without requiring extensive knowledge of ROS or programming.
The block-based approach not only simplifies swarm control but
also expands educational opportunities in programming.

Index Terms—swarm robotics, block programming, drone
swarms, high-level interface, multi-robot coordination, educa-
tional robotics

I. INTRODUCTION

Swarm robotics is a field of multi-robot systems where a
large number of relatively simple robots cooperate to achieve
complex tasks. Inspired by natural systems such as ant colonies
and bird flocks, swarm robotics emphasizes the importance of
decentralized control and local interactions among robots [5].
The Swarm-in-Blocks project introduces a high-level interface
based on block programming, designed to make drone swarm
programming accessible and straightforward, even for users
with limited technical knowledge [1].

II. PROJECT BACKGROUND

Swarm-in-Blocks originated as a project for CopterHack
2022, designed as a high-level interface using block language
to simplify the programming of drone swarms. Each script
in this language represents functionalities such as conditional
structures, loops, or functions that handle swarm instructions.
The platform is built on existing systems from COEX, specif-
ically Clover. In 2023, Swarm-in-Blocks evolved into Swarm-
in-Blocks 2.0, aiming to tackle more complex challenges
associated with swarm robotics in an accessible and polished
manner [2].

III. SYSTEM ARCHITECTURE

The Swarm-in-Blocks framework provides a secure and
scalable platform for swarm robotics, consisting of the fol-
lowing components:

• Block-Based Programming Interface: A user-friendly,
high-level programming interface that allows users to
create scripts by fitting together code blocks like puzzle
pieces.

• Robotic Nodes: Drones equipped with sensors and com-
munication modules to interact with the programming
interface and each other.

• Control System: Manages the execution of scripts and
coordination of drone movements based on the pro-
grammed blocks.

• User Interface: Tools for monitoring and managing the
swarm.

Fig. 1. Simple demo of the platform running.

A. Block-Based Programming Interface

The block-based programming interface is designed to be
intuitive, enabling users to create complex swarm behaviors
without needing to write traditional code. The interface in-
cludes blocks for various functions such as movement com-
mands, conditional logic, and sensor data processing. This
approach lowers the barrier to entry for programming drone
swarms, making it accessible to a wider audience [3].

B. Robotic Nodes

Each drone in the Swarm-in-Blocks system acts as a robotic
node, equipped with sensors for navigation and communica-
tion modules to interact with other drones and the control
system. The drones are designed to be robust and capable

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 284



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-34 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Fig. 2. Swarm Clover Blocks example.

of operating in diverse environments, from indoor spaces to
outdoor fields [4].

C. Control System

The control system is responsible for executing the scripts
created using the block-based programming interface. It inter-
prets the block sequences and translates them into commands
that are sent to the drones. The system also handles coordi-
nation between drones, ensuring that they work together to
achieve the desired objectives [5].

D. User Interface

The user interface provides tools for monitoring and manag-
ing the swarm. Users can view the status of individual drones,
track their movements in real-time, and adjust parameters as
needed. The interface is designed to be intuitive and user-
friendly, making it easy for users to manage complex swarm
operations [3].

Fig. 3. Swarm in Blocks homepage

IV. APPLICATIONS

Swarm-in-Blocks has several potential applications, includ-
ing:

A. Industrial Automation

Swarm robotics can optimize industrial tasks like inventory
management and quality control. The Swarm-in-Blocks frame-
work enables autonomous drones to navigate warehouses,

perform stocktaking, and detect damaged goods, reducing
manual labor and enhancing efficiency [4].

B. Agriculture

In agriculture, drone swarms can handle precision tasks such
as crop monitoring, pest control, and irrigation management.
The block-based interface simplifies the setup of these opera-
tions, improving resource use and crop yields through targeted
interventions [5].

C. Entertainment

Swarm-in-Blocks facilitates the creation of aerial light
shows by simplifying the programming of drone choreogra-
phies. The intuitive interface allows artists to design and
execute captivating performances with ease [3].

V. BLOCK PROGRAMMING FOR GENERAL ROBOTICS

The ”Swarm-in-Blocks” project, developed for the Copter-
Hack competition and enhanced in 2023 with Swarm-in-
Blocks 2.0, offers a block-based programming interface for
controlling drone swarms. This project not only advances
swarm control technology but also holds significant educa-
tional potential, particularly as a teaching tool.

Block-based programming, widely used in educational
robotics, simplifies the learning of programming. Platforms
like Blockly and Scratch allow users to stack blocks repre-
senting code segments, making it easier for students of all
ages to learn coding and computational thinking skills.

A. Educational Robotics

Educational robotics uses robots to facilitate learning in
STEM education. Tools like Scratch and Blockly make pro-
gramming accessible to young learners by allowing them
to drag and drop blocks representing commands and logic
structures [8].

B. Simplifying the Learning of Programming Concepts

Block programming makes learning programming concepts
intuitive and accessible. It is particularly effective for intro-
ducing students to programming without the complexity of
traditional coding languages.

C. Promoting Critical Thinking and Problem-Solving

Programming drones in formation fosters critical thinking
and problem-solving skills. Students plan, test, and adjust
instructions, considering variables like speed and altitude,
enhancing their logical and systematic thinking.

D. Multidisciplinary Integration

Swarm-in-Blocks integrates concepts from mathematics,
physics, computer science, and engineering. This multidisci-
plinary approach helps students apply theoretical knowledge
to practical situations, essential in STEM education.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 285



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-34 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

E. Preparation for the Job Market

By introducing drone programming and blockchain technol-
ogy, Swarm-in-Blocks prepares students for future job mar-
kets. Practical experience in these areas offers a competitive
edge in robotics and blockchain careers.

F. Applications in Educational Settings

Robots like LEGO Mindstorms and VEX Robotics are used
in educational settings to teach programming and robotics.
These robots work with block-based coding environments,
simplifying the learning process [10], [9].

G. Impact on Learning

Research shows that block-based programming enhances
students’ understanding of programming, improves problem-
solving skills, and increases engagement in learning [8], [9].

VI. SWARM IN BLOCKS SYSTEMS IN DETAILS

Due to the complexity of the Swarm in Blocks project,
it was divided into systems, which represent a macroscopic
view of sets of similar functionality. In this section, we will
detail the developed systems, dealing not only with the features
developed, but also with the motivation and implications for
this.

A. Formations

The ”Formations” of the Swarm-in-Blocks project details
the use of 2D and 3D formations for drone swarms. The
Python script formation.py calculates drone positions for for-
mations such as lines, circles, squares, triangles, cubes, pyra-
mids, and spheres. Using the Numpy library, it generates arrays
of coordinates for each drone. The swarm.py file handles the
application of these formations, allowing users to select and
visualize formations through a menu interface. This facilitates
the creation and management of complex drone formations
with ease.

Fig. 4. Circle formation.

B. Transformations
The ”Transformations” section of the Swarm-in-Blocks

project covers operations that allow editing the drones’ ar-
rangement and the formation itself. Using matrix operations,
procedures for translation, scaling, and rotation of the entire
formation are developed. These transformations adjust the cur-
rent coordinates of the drones, with special care for rotation,
which requires centralizing the formation at the origin of the
map. The collision prevention algorithm ensures that potential
collisions are avoided during transformations.

C. Collision Avoidance
The ”Collision Avoidance” section of the Swarm-in-Blocks

project details an algorithm designed to prevent drone colli-
sions within a swarm. The algorithm addresses three scenarios:
one stationary and one moving drone, both drones moving
on parallel paths, and both drones moving on non-parallel
paths. It utilizes matrix operations and ROS (Robot Operating
System) functionalities to manage drone positions and ensure
safe distances are maintained, preventing collisions during
swarm operations.

D. LED Effects
In the Swarm-in-Blocks project, the LED effects system

allows for visual enhancements of drone formations. Ready-
to-use effects include options for all drones, random drones,
even and odd drones, and 2D formations. These effects can
be controlled via user input, offering various modes like fill,
fade, flash, blink, blink fast, wipe, rainbow, and rainbow fill.
Each effect alters the LED behavior to enhance visibility and
aesthetics, with some effects tailored to specific formations.

E. First Person View (FPV)
Part of the Swarm-in-Blocks 2.0, the First Person View

(FPV) system enhances user experience by allowing real-
time control of drones via a camera feed. Developed using
roslibjs for web integration with ROS, it enables users to view
and control drones through a web interface using JavaScript,
HTML, and CSS. Users can select drones, view live footage,
and control drone movements with keyboard inputs, improving
flight safety and control.

Fig. 5. Swarm in Blocks 2023 FPV.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 286



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-34 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

F. Smart Preview

Swarm Preview in the Swarm-in-Blocks project enables
users to visualize swarm behavior in simulations or real life
with minimal computational power. It’s used primarily in
Planning Mode but also in Simulation and Navigation Modes.
Users can choose 2D or 3D previews via the Python or Blocks
API. Functions include resuming, saving, and canceling simu-
lations, and navigating through operations with control arrows
to identify issues.

Fig. 6. 3D Plot Preview menu.

VII. CODE REVIEW

In this section, we delve deeper into the codebase that under-
pins the core components of our Swarm-in-Blocks platform.
The primary focus will be on examining the code responsible
for the key pillars of our application: the Swarm Clover
Blocks, the homepage, the First Person View (FPV) and
the Swarm Station. These pillars form the foundation of our
platform, each contributing unique functionality and ensuring
seamless interaction between users and drone swarms.

The subsections that follow will present detailed explana-
tions and code snippets to illustrate how these pillars are
constructed, focusing on the logic and structure that enable
the Swarm-in-Blocks platform to function effectively.

A. Swarm Clover Blocks

The swarm_clover_blocks is a crucial component
of the Swarm-in-Blocks platform, serving as the backend
that enables block-based programming for drone swarms.
This backend application extends the functionalities of the
original clover_blocks package, integrating support for
controlling multiple drones simultaneously, which is essential
for swarm operations.

1) Code Structure: The swarm_clover_blocks pack-
age is organized into several directories and files, each playing
a specific role in the overall functionality of the platform:

a) msg/: This directory contains the message definitions
used within the system. These messages are essentially the
data structures that encapsulate user requests and responses,
along with any necessary identifiers. The use of ROS mes-
sages allows for standardized communication between differ-
ent nodes in the ROS ecosystem.

b) programs/: In this directory, pre-configured exam-
ples of block-based programs are stored. These examples are
complete with the necessary blocks to perform specific tasks,
providing users with ready-made templates that can be easily
customized through the frontend interface.

c) src/: This is the core of the backend, where the
primary logic of the swarm_clover_blocks resides. The
key file here is clover_blocks.py, which orchestrates all
backend operations, including the execution of user-defined
programs and management of communication between the
frontend and the drones.

d) srv/: The srv/ directory defines the service files,
which specify the structure of requests and responses for
operations like loading, running, and storing programs. These
services are essential for the dynamic interaction between the
frontend interface and the backend logic.

e) www/: This directory forms the heart of the frontend.
It includes the core Blockly files as well as custom adap-
tations specific to the Swarm-in-Blocks platform. Key files
include blocks.js, which defines the available blocks and
their functionalities, index.html for the web interface, and
main.css for styling the interface. Additionally, ros.js
and roslib.js are used for communication with the ROS
backend.

2) Node Functionality: The swarm_clover_blocks
node is the operational backbone of the block-based program-
ming interface. It implements all the necessary services and
topics to run Blockly-generated Python scripts. The node’s
functionality includes:

• Service run – Executes the Blockly-generated pro-
gram, interpreting the block sequence as a Python script
and commanding the drones accordingly.

• Service stop – Provides the ability to terminate an
ongoing program, ensuring that drone operations can be
halted safely and immediately.

• Service store – Allows users to save their block-
based programs for future use, facilitating easy access
and reusability of code.

• Service load – Retrieves stored programs from the
programs/ directory, making them available for exe-
cution through the frontend.

3) Parameters and Topics: The
swarm_clover_blocks node also manages several
parameters and topics that govern its operation:

a) Parameters: The parameters control various aspects
of the drone’s behavior, such as navigation tolerances, yaw
angle precision, and confirmation prompts before running a

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 287



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-34 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

program. These parameters can be adjusted directly in the node
configuration or via URL GET-parameters when accessing the
web interface.

b) Published Topics: The node publishes several topics,
including:

• running: Indicates whether a program is currently
being executed.

• block: Provides updates on the current block being
executed, which is particularly useful for monitoring
program progress.

• error: Reports any errors or exceptions that occur dur-
ing program execution, ensuring that users are informed
of issues in real time.

• prompt: Manages user input requests during program
execution, allowing for interactive control of the drone
swarm.

This comprehensive structure ensures that the
swarm_clover_blocks package can effectively manage
the complex task of programming and controlling drone
swarms, providing both a user-friendly frontend and a
powerful backend.

For more detailed information about the Swarm Clover
Blocks, please refer to the official repository available at
Swarm-in-Blocks Repository.

Fig. 7. Swarm Clover Blocks Code.

B. homepage

The Clover_UI serves as the main user interface for the
Swarm-in-Blocks platform, providing users with a comprehen-
sive homepage to launch and manage both individual drones
and drone swarms. This interface is accessible through a web
browser by navigating to the localhost address configured via
Apache, making it easy to control and monitor drones directly
from any device on the same network.

1) Code Structure: The Clover_UI package is organized
into a ReactJS project, with a clear structure that facilitates
development, deployment, and maintenance. The following are
the key components of the project:

a) cloverUI/: This is the root directory of the Reac-
tJS project. It contains all the essential files and folders needed
to run the Clover UI, including the main HTML file and source
code.

b) cloverUI/index.html: This file is a crucial part
of the ReactJS configuration. It acts as an entry point for
the application, calling the main project components but not
containing the actual application code.

c) cloverUI/src/: The src/ directory is where the
core logic and algorithms of the Clover UI reside. This is the
primary source folder, containing all the React components
and configuration files that drive the application’s functionality.

d) cloverUI/src/App.jsx: The App.jsx file is
the heart of the Clover UI project. It orchestrates the entire
application by calling all the component pages. Each specific
component’s code is located in the Components folder, and
App.jsx brings these components together to form the full
user interface.

e) cloverUI/src/Componentes/: This folder
contains the essential components that make up the
application. Each component represents a specific part of the
user interface, such as the header, carousel, or action buttons.

f) cloverUI/src/style.js: The style.js file
contains Vite configuration settings that apply the defined
styles dynamically. Vite is used to manage the project’s build
process, ensuring that styles are correctly applied during both
development and production builds.

2) Frontend Technologies: The Clover UI leverages the
ReactJS framework to create a responsive and interactive
user interface. ReactJS was chosen due to its popularity, fast
learning curve, and active community, making it an ideal
choice for developing a robust and scalable frontend.

Additionally, the Clover UI takes advantage of complex
visual effects, such as the Slider Carousel, to enhance the user
experience. ReactJS’s flexibility and ease of use enabled the
development of a platform that is both functional and user-
friendly, even though the page does not have its own backend.

To further streamline the development process, Vite, a Reac-
tJS project builder, was used. Vite simplifies the creation and
configuration of ReactJS projects, providing a pre-configured
environment that is ready to use. This allowed the development
team to focus on building the user interface rather than dealing
with complex setup processes.

For more detailed information about the homepage, please
refer to the official repository available at Swarm-in-Blocks
Repository.

C. First Person View (FPV)

The development of the Swarm First Person View (sFPV)
system allows drone pilots to control flights in real time
through a camera installed on the drone. This feature has been
restructured to run entirely on the web, integrating seamlessly
with the Swarm Station. The sFPV system enhances drone
operation by providing real-time visuals and data, such as
battery levels, telemetry, CPU status, and flight state, thereby
improving flight safety and control.

1) Code Structure: The sFPV package is organized into
two main parts: the backend and the frontend. Each plays a
critical role in ensuring the system’s functionality:

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 288



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-34 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

a) msg/: This directory contains the messages used to
handle user requests and manage communication within the
system. These messages are essential for relaying commands
and responses between the frontend interface and the backend
services.

b) src/: The src/ directory houses the core script
files needed to run the FPV application. These scripts are
responsible for capturing the drone’s camera feed, processing
it, and relaying it to the user interface for real-time display.

c) launch/: The launch/ directory contains the nec-
essary launch files to execute the FPV system. These files
allow users to initiate the application from the terminal, setting
up the environment and connecting the necessary ROS nodes
for the operation of sFPV.

2) Frontend: The frontend of the FPV application is built
using roslib.js to facilitate communication with the ROS
backend. The web interface, developed with HTML and CSS,
allows users to control the drone through their browser. This
interface displays the live video feed from the drone’s camera,
along with essential telemetry data, enabling precise and safe
drone operation. The user can interact with the drone using
computer keyboard inputs, adding another layer of control
directly from the web interface.

Fig. 8. First Person View Code.

For more detailed information about the sFPV, please refer
to the official repository available at Swarm-in-Blocks Repos-
itory.

D. Swarm Station

The swarm_station package is responsible for run-
ning the backend of the Swarm Station, which provides a
fully integrated control center for managing drone swarms.
This package utilizes the tf2_web_republisher package
alongside the roslibjs and ros3djs libraries to serve a
3D web visualizer. The system runs almost entirely on the
web, allowing users to access the Swarm Station from any
device connected to the same network as the host.

1) Code Structure: The swarm_station package is or-
ganized into several key directories, each playing a crucial role
in the overall functionality of the Swarm Station:

Fig. 9. Swarm in Blocks Swarm Station.

a) launch/: The launch/ folder defines and initial-
izes nodes, services, and parameters necessary to start the
application. It also includes specific configurations required
for the package.

b) meshes/: This directory contains definitions of the
physical and dynamic characteristics of the Clover’s 3D model
used for simulation purposes.

c) src/: The src/ directory is the core of the package,
where source code is developed and compiled. It includes the
definitions responsible for creating nodes, services, and other
functionalities related to the frontend of the Swarm Station.

2) Main Features: The Swarm Station includes several
integrated features designed to streamline swarm management:

a) Information Center: A central hub for displaying
essential data on each drone, including an emergency ”land
all” button for quick response.

b) Drone’s Process: Displays hardware information from
each Clover’s Raspberry Pi, making it easier to identify and
compare potential issues.

c) Topic List: A feature that lists currently active topics,
allowing users to monitor and analyze ongoing processes
without needing an additional terminal.

d) Web Terminal: A web-based terminal that allows users
to send commands directly from the web interface, avoiding
the need for multiple screens. Multiple terminals can be
opened simultaneously for handling various processes.

e) Safe Area: A feature that lets users define a safe
operating area for the drones. If a drone exits this area, it
is automatically landed, enhancing safety.

For more detailed information about the Swarm Station,
please refer to the official repository available at Swarm-in-
Blocks Repository.

VIII. COMMUNICATION GRAFICS

The Swarm-in-Blocks platform effectively integrates
MAVROS, ROS, and its web-based interface to manage
and control multiple drones. MAVROS acts as a bridge
between the drone’s flight controllers and the ROS ecosystem,
translating drone-specific commands and telemetry into a
ROS-compatible format.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 289



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-34 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

ROS serves as the central hub, coordinating the flow of
information between the drones and the user interface. The
Swarm-in-Blocks interface, built using roslibjs, commu-
nicates with ROS nodes in real-time, allowing users to control
drones through an intuitive block-based programming environ-
ment.

Commands created in the interface are converted into ROS
commands and sent to MAVROS, which executes them across
the connected drones. The drones’ telemetry and status updates
are fed back through this communication chain, ensuring that
users can monitor and adjust operations as needed.

Fig. 10. Schematic of communication flow between MAVROS, ROS, and
Swarm-in-Blocks.

This streamlined communication framework ensures cohe-
sive and synchronized control of the entire drone swarm.

IX. SIMULATION ANALYSIS

Simulation analysis is essential for validating and opti-
mizing robotic systems before real-world deployment. By
using advanced tools like Gazebo, we can recreate complex
scenarios, evaluate system performance, and identify potential
issues in a virtual environment. This section focuses on
integrating two systems within Gazebo, covering the setup
process, system interaction, and outcome analysis to refine
design and functionality.

This method provides a thorough evaluation of system
behavior under various conditions, allowing developers to
enhance reliability and efficiency. Whether testing a single
robot or a complex multi-agent scenario, the insights from
these simulations are crucial for guiding development and
ensuring successful deployment.

A. The Systems

The first system features an Nvidia RTX 3060 mobile GPU,
an Intel i7-11800H processor, and 16GB of DDR4 RAM,
offering a strong blend of graphical and computational power
for smooth, high-resolution simulations in Gazebo. The second
system, with an AMD Ryzen 5 3600 CPU, a Radeon RX 5700
XT OC GPU, and 16GB of DDR4 RAM, provides robust
processing and excellent graphical rendering, making it well-
suited for intensive simulation tasks requiring both CPU and
GPU performance.

B. Real Time Factor

The Real-Time Factor (RTF) in Gazebo serves as an indi-
cator of how efficiently the simulation runs compared to real-
time. Ideally, an RTF of 1.0 signifies that the simulation is
running exactly in real-time, while an RTF below 1.0 indicates
that the simulation is running slower than real-time, typically
due to increasing computational demands.

Fig. 11. Comparisson of RTF between 2 systems.
.

In the graph provided, the blue line represents the perfor-
mance of the AMD-based system (AMD Ryzen 5 3600 with
Radeon RX 5700 XT OC), while the red line represents the
Nvidia-based system (Intel i7-11800H with Nvidia RTX 3060
mobile). As the number of drones increases, the RTF decreases
for both systems, reflecting the higher computational load.

However, a critical observation is that when the number of
drones exceeds 10, the RTF for the Nvidia-based system (red
line) drops precipitously and eventually crashes the system, as
indicated by the RTF reaching near zero. This crash highlights
the Nvidia-based system’s inability to handle the simulation
workload as effectively as the AMD-based system, which,
although also experiencing a decline in RTF, manages to
sustain the simulation for a larger number of drones. This
suggests that the AMD system provides better stability and
performance under high-load conditions in Gazebo, whereas
the Nvidia system struggles and ultimately fails when the
number of drones increases beyond 10.

C. Analysis

The scalability of the system is directly influenced by the
performance of its central node. The AMD-based system
(Ryzen 5 3600 with Radeon RX 5700 XT OC) demonstrates
better scalability, as it can manage an increasing number of
drones without crashing, making it suitable for expanding
the simulation’s complexity. In contrast, the Nvidia-based
system (i7-11800H with RTX 3060 mobile) shows limited
scalability, struggling with more than 10 drones, which leads to
system crashes and hinders the ability to scale the simulation
effectively.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 290



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-34 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

To achieve greater scalability, upgrading to more powerful
and modern components would enhance the system’s capacity
to handle larger simulations and real life number of drones.
This would ensure that the central node maintains performance
and stability as the number of drones and the complexity of the
simulation increase, allowing for a more scalable and robust
solution in demanding environments.

X. RESULTS AND DISCUSSION

The Swarm-in-Blocks framework has shown significant
improvements in drone swarm coordination and ease of use.
Its block-based interface allows for quick prototyping and
iterative testing, enabling users with minimal programming
experience to manage drone swarm operations effectively [3].

A. Scalability and Flexibility

Swarm-in-Blocks is highly scalable, supporting large num-
bers of drones without added complexity. The modular blocks
offer flexibility in defining and modifying swarm behaviors,
essential for large-scale applications like environmental mon-
itoring and disaster response [4].

B. Safety and Reliability

Decentralized control mechanisms enhance the system’s
safety and reliability. Autonomous operation and redundancy
ensure the swarm continues functioning even with drone
malfunctions [5].

C. Performance Evaluation

Swarm-in-Blocks handles real-time operations with minimal
latency. The block-based interface simplifies programming, al-
lowing users to focus on high-level strategies. Benchmark tests
confirm efficient performance across various environments [3].

D. User Feedback

Users have praised the intuitive design and ease of use. Ed-
ucational institutions find it particularly valuable for teaching
swarm robotics, bridging the gap between theory and practice
[4].

XI. FUTURE WORK

Swarm-in-Blocks is continuously evolving, with future work
focusing on:

A. Integration with Other Platforms

Integrating with other robotic platforms for seamless in-
teroperability, enabling comprehensive solutions for complex
tasks [3].

B. Enhanced User Interface

Improving the user interface with more customization, real-
time feedback, and monitoring tools to simplify large swarm
management [4].

C. Field Testing and Validation

Conducting extensive field testing in diverse environments
to ensure robustness and identify areas for improvement [5].

XII. CONCLUSION

The Swarm-in-Blocks project simplifies the programming
of drone swarms using a block-based language, making it
accessible to users with limited technical knowledge. The
Swarm-in-Blocks framework provides a user-friendly and
scalable platform for communication and coordination, with
potential applications in areas such as environmental monitor-
ing, disaster response, industrial automation, agriculture, and
entertainment. Future work will focus on further optimizing
the framework and exploring additional applications in various
domains.

ACKNOWLEDGMENTS TO THE ATENA TEAM

We would like to express our deep gratitude to the Atena
team, part of the SEMEAR Group (Solutions in Mechatronic
Engineering and Robotics Application) at the University of
São Paulo (USP), São Carlos campus.

Comprising over 100 members, including undergraduate and
graduate students, and supported by professors, the Atena
team participated in competitions such as CopterHack. Team
members include Agnes Bressan de Almeida, João Aires Cor-
rea Fernandes Marsicano, Felipe Andrade Garcia Tommaselli,
Gabriel Ribeiro Rodrigues Dessotti, José Carlos Andrade
do Nascimento, Lucas Sales Duarte, Matheus Della Rocca
Martins, and Nathan Fernandes Vilas Boas. Their dedication
and collaboration were essential for the project’s success.

For more information, visit the SEMEAR website.

XIII. REFERENCES

REFERENCES

[1] Swarm-in-Blocks GitBook. (n.d.). Retrieved from https:
//swarm-in-blocks.gitbook.io/swarm-in-blocks

[2] Swarm-in-Blocks GitHub Repository. (n.d.). Retrieved from https://
github.com/Grupo-SEMEAR-USP/swarm in blocks

[3] DroneBlocks. (n.d.). Retrieved from https://droneblocks.io
[4] Droneblog. (2023). The Making of A Drone Swarm: Everything You

Need To Know. Retrieved from https://www.droneblog.com
[5] U.S. GAO. (2022). Science & Tech Spotlight: Drone Swarm Technolo-

gies. Retrieved from https://www.gao.gov
[6] Control.com. (2022). How to Train a Robot: Block-Based Programming.

Retrieved from https://control.com
[7] Robots.net. (2023). What Is Block Coding. Retrieved from https://robots.

net
[8] International Journal of STEM Education. (2022). The effects of

educational robotics in STEM education. Retrieved from https://
stemeducationjournal.springeropen.com

[9] Springer. (2021). Teaching Digital, Block-Based Coding of Robots to
High School Students. Retrieved from https://link.springer.com

[10] iRobot Education. (2023). Coding Robots, Learning Library STEM
Outreach. Retrieved from https://edu.irobot.com

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 291


	Papers
	Swarm-in-Blocks: Simplifying Drone Swarm Programming with Block-Based Language


