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ABSTRACT

This work study the impact on a Model-
Free Control (MFC) feedback combined with
flatness-based control, also know as Restricted-
Model Control (RMC), in order to address the
problem of robustness to uncertain parameters.
The proposed control architecture, is applied to
the half-quad Quanser Aero benchmark in two
degree-of-freedom configuration. Tests focuse
on the robustness of RMC to over-efficient pro-
pellers, under-efficient propellers and augmented
friction.

1 INTRODUCTION

The number and diversity of applications involving Micro
Air Vehicles (MAVs) are extensive and have received con-
siderable attention in recent years. Among possible struc-
tures, quadrotor UAVs are a popular option for tasks that
require highly agile maneuvers in complex, constrained en-
vironments. The Quanser laboratory-based two degree-of-
freedom (2-DoF) helicopter system is an ideal platform for
such studies due to its versatile design, which allows for the
emulation of various flight dynamics and control scenarios.
Its ability to operate in both single degree-of-freedom and two
degree-of-freedom configurations makes it particularly use-
ful for testing advanced control strategies under different dy-
namic conditions. Several advanced control techniques like
optimal linear control ([1]), sliding mode ([2] and [3]) and
adaptive control ([4]) have been employed. However, these
approaches require the development of an accurate model de-
scribing the dynamics, which is costly and time-consuming.

Flatness-based control (see [5]) offers significant advan-
tages due to its capacity to explicitly derive control inputs
from desired trajectories. This approach ensures that complex
trajectory planning and execution can be achieved with high
accuracy, which is essential for MAVs operating in dynamic
and constrained environments. However, real-world appli-
cations often involve uncertainties and unmodeled dynamics
that can degrade the performance of model-based controllers.
For this purpose, Model-Free Control (MFC, see [6]) theory,
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coupled with flatness-based control, has been developed, pro-
viding robustness and enhancing the performance of the con-
trol system.

The Quanser Aero, with its configurable propellers and
adjustable friction settings, allows for a controlled environ-
ment to study the interplay between these two control strate-
gies. By examining the effects of MFC feedback on a
flatness-based control scheme, we can better understand how
to mitigate the limitations of model-based control in the pres-
ence of real-world uncertainties. The experiments conducted
on the Quanser Aero will provide valuable insights into the
practical implementation of this combined control strategy,
ultimately contributing to the development of more reliable
and efficient control systems for MAVs.

While recalling the basic motion equations of the Quanser
Aero in §II, the main contributions of this paper are therefore:

• to make explicit in §III the theoretical equations that
describe RMC architecture in the benchmarking case
of the Quanser Aero;

• to provide new preliminary results §IV, focusing on
the behaviour of flatness-based control and Restricted-
Model-Control with parameters variations.

2 SYSTEM DESCRIPTION

The Quanser Aero is a control benchmark proposed by the
Canadian manufacturer Quanser 1. It’s a Multi-Input Muli-
Output (MIMO) system with 2 configurations and a direct
integration with Matlab-Simulink®. The Quanser Aero, rep-
resented Figure 1, have 2 propellers that can be rotated to be
either horizontal or vertical. Thus this benchmark have two
configurations. On the first one, both propellers are horizon-
tal and this system have only one degree of freedom, pitch
rotation. On the second one, one propeller is horizontal and
the second one is vertical so this system have 2 degree of free-
dom, pitch and yaw rotation (see Figure 2). For this work we
used the second configuration.

2.1 Modelling
As depicted in the free-body diagram in Figure 2, the hor-

izontal propeller, controlled by the tension Vp, generates a
force Fp and induces a torque τp, causing angular motion θ
in the pitch plane (around the y axis). Similarly, the yaw ro-
tor, driven by the tension Vy , produces an aerodynamic force

1https://www.quanser.com/products/quanser-aero/
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Figure 1: Quanser Aero : 2 degree of freedom configuration
[image by Quanser Inc.]

Fy , resulting in torque τy and angular motion ψ in the yaw
plane (around the z axis). These cross-torques cause sig-
nificant cross-coupling between pitch and yaw channels. In
the Quanser Aero documentation [7], a simple spring-mass-
damper type of linear model that takes this coupling into ac-
count, is considered. The equations of motion are described
in equation (1)





Jpθ̈ +Dpθ̇ +Kspθ = τp

Jyψ̈ +Dyψ̇ = τy

(1)

where τp and τy are related to their respective motor voltages
by

τp = KppVp +KpyVy, τy = KypVp +KyyVy (2)

From the point of view of state-space modelling, the state of
this system is x = [θ ψ θ̇ ψ̇]T , the input is x = [Vp Vy]

T and
the output is y = [θ ψ]T

Some of the parameters in equation (1) and equation (2)
are given in the system’s specification, while others were ex-
perimentally obtained. The values of the parameters are given
by Table 1. In the above description, the term Ksp accounts
for the gravitational force affecting the vertical motion (i.e,
pitch), whereas no such factor is considered for the horizon-
tal motion (i.e, yaw). It is important to note that in this model,
the interaction between pitch and yaw movements is captured
by the cross-terms Kpy and Kyp with |Kpy| = |Kpp| and
|Kyy| = 1.5|Kyp| (see Table 1), the coupling from Vp to ψ is
significantly more than the one from Vy to θ.

2.2 Settings
The Quanser Aero model allows for various modifications

enabling versatile testing of control strategies and dynamic
responses in different experimental scenarios. In this paper,
we will concentrate on propeller configurations and friction
settings. It is possible to modify the system in two ways to
study different aerodynamic and control behaviors. Firstly,

the system comes with two main configurations of propellers:
a pair with 2 blades and another with 10 blades. Switch-
ing between these configurations allows observing how the
propeller setup affects the generation of forces and moments,
as well as the stability and maneuverability of the system.
Secondly, the model offers the option to adjust friction on
the horizontal axis by tightening or loosening a screw. This
adjustment varies the perceived resistance and inertia by the
system, thereby influencing its dynamic response and control
accuracy.

Figure 2: Free-body diagram of the Quanser Aero

Table 1: System parameters
Parameters (10 blades propeller) Value/range
Moment of inertia about pitch axis (Jp) 0.0219 kgm2

Moment of inertia about yaw axis(Jy) 0.022 kgm2

Damping about pitch axis (Dp) 0.0113 Vs/rad
Damping about yaw axis (Dy) 0.0131 Vs/rad
Stiffness about pitch axis (Ksp) 0.0419 Nm/rad
Torque thrust gain from pitch rotor

0.0013 Nm/Vacting on pitch (Kpp)
Torque thrust gain from yaw rotor

0.002 Nm/Vacting on yaw (Kyy)
Torque thrust gain from yaw rotor

0.0016 Nm/Vacting on pitch (Kpy)
Torque thrust gain from pitch rotor −0.0013

Nm/Vacting on yaw (Kyp)

3 RESTRICTED MODEL CONTROL

Restricted Model Control (RMC, presented in [6] [8])
represents a compelling synthesis of two control methodolo-
gies : flatness-based and Model-Free Control (MFC).

Differential flatness was first introduced by M. Fliess and
al. in [5]. It’s a structural property of a system that can be
used to compute nominal control input based on a dynami-
cal model and a desired output. Flatness based control can
successfully solve trajectory tracking problems for complex
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nonlinear systems like for example : induction drive [9], de-
lay systems [10], partial differential equations [11], [12] and
tilt-body UAV [13].

Model-Free Control term appears many times in the lit-
erature, but in distinct meanings from this paper. Actually,
the growing importance of artificial intelligence and machine
learning techniques, particularly through neural networks,
has naturally been implanted into the model-free terms: see,
for example [14] and [15]. However, in this paper, we assume
Model-Free Control terms according to [16].

3.1 Flatness based controller
Consider a system with state x(t) ∈ Rn and input u(t) ∈

Rm defined by equation 3.

ẋ(t) = f(x(t),u(t)) (3)

This system is said deferentially flat, or just flat, if it exist
z(t) ∈ Rm, called flat output, defined by equation (4) and
two function A and B such as the state and the control input
and be express based on this flat output.

z(t) = Φ(x(t),u(t), u̇(t), · · · ,u(ϕ)(t)) (4)

x(t) = A(z(t), ż(t), · · · , z(α)(t)) (5)

u(t) = B(z(t), ż(t), · · · , z(β)(t)) (6)

For flatness-based control we need to have a smooth
enough reference flat output trajectory z∗(t). Then we use
this reference trajectory and equation (6) to compute the nom-
inal input u∗(t). The global input, u(t) is the sum of the
nominal input and a feedback term, δu(t)

u(t) = u∗(t) + δu(t) (7)

Coming back to the Quanser Aero, the output of the sys-
tem, y(t) = [θ(t) ψ(t)]T is a flat output. The state vector is
trivially obtained with this flat output and its derivative. The
relation between the flat output and the input vector is given
by equation (8).





Vp =
Jpθ̈ +Dpθ̇ +Kspθ

Kpp −KpyKypK
−1
yy

− Kyp(Jyψ̈ +Dyψ̇)

KppKyy −KpyKyp

Vy =
Jyψ̈ +Dyψ̇ −KypVp

Kyy

(8)
With this equation and a twice derivable reference tra-

jectory [θ∗(t) ψ∗(t)]T we have the nominal control input,
[V ∗
p (t) V

∗
y (t)]

T . The next step is to choose a feedback
[δVp(t) δVy(t)]

T .
With a linear system, one of the simplest choice is to use

a feedback proportional to the position error. For the Quanser

Aero this gives :

Vp = V ∗
p + δVp (9)

Vy = V ∗
y + δVy (10)

with :

δVp = K1(θ − θ∗) +K2(ψ − ψ∗) (11)
δVy = K3(θ − θ∗) +K4(ψ − ψ∗) (12)

But it’s also possible to construct more a interesting feed-
back using, for example a data-based control law.

3.2 Flatness-based model-free control
Model-Free Control (MFC) is a data-based control archi-

tecture proposed by M. Fliess, C. Join and H. Sira-Ramirez
([16]). This controller uses an ultra-local model, given by
equation (13), to estimate the unknown dynamic of a system.
In this model, ν is the derivative order of y (in general 1 or
2) and α a parameter representing the impact of the input on
the dynamic of the output. Both ν and α are chosen by the
practitioner. The key step of this theory is the estimation of
F (t). It can be made by considering F (t) as a piecewise con-
stant function and using the algebraic estimation technique
proposed in [17].

y(ν)(t) = F (t) + αu(t) (13)

Once we have F̂ (t), the estimate of F (t), the control in-
put is given by equation (14) with C(e(t)) a PID controller
and y∗(t) a reference output trajectory.

u(t) =
−F̂ (t) + y∗(ν)(t) + C(e(t))

α
(14)

MFC can be used when there is limited information about
the system or when the model is not precise enough. It can
also complement model-based controllers to compensate for
unmodeled system dynamics.

Figure 3: Restricted-Model Controller

The combination of flatness based control and MFC is
called Restricted Model Control (RMC). A diagram of this
control strategy is proposed figure 3, (to keep this diagram
clear, we illustrated the case where the output of the system
is also a flat output). In the RMC architecture, the ultra-local
model given by equation (13) is adapted to represent the dy-
namic of the error ey = y − y∗ thus we have :
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e(ν)y (t) = F (t) + αδu(t) (15)

From this model, equation (14) is rewrited stabilised the
error in 0.

δu(t) =
−F̂ (t) + C(e(t))

α
(16)

For the Quanser Aero, the ultra-local model have to be
adapted for a MIMO systems. Extension of MCF to this kind
of systems where used in [18] and [19]. Since the cross cou-
pling gains, Kpy and Kyp, are important, we choose to use
coupled ultra-local model. By taking the second derivative of
the position errors, we have an ultra-local model given by :

{
ëθ(t) = Fθ(t) + αppδVp(t) + αpyδVy(t)

ëψ(t) = Fψ(t) + αypδVp(t) + αyyδVy(t)
(17)

Using the previously mentioned algebraic technique, an
estimation of Fθ can be :

F̂θ(t) =
60

T 5
fθ

∫ Tfθ

0

(
(Tfθ − τ)2 − 4τ(Tfθ − τ) + τ2

)
ẽθ(τ)

− αpp
2
τ2(Tfθ − τ)2δṼp(τ)−

αpy
2
τ2(Tfθ − τ)2δṼy(τ)dτ

(18)

with Tfθ the time window, ẽθ(τ) = eθ(τ+t−Tfθ), δṼp(τ) =
δVp(τ + t − Tfθ) et δṼp(τ) = δVy(τ + t − Tfθ). F̂ψ is
computed by replacing Tfθ by Tfψ , ẽθ(τ) by ẽψ(τ), αpp by
αyp and αpy by αyy .

The quality of this estimation depend on the choice of
Tfθ. To have a good estimate, Tfθ have to bee small enough
but a larger Tfθ guarantee better robustness to measurement
noise.

With the two equations of the system (17) we can obtain
the expression of δVy(t) given by equation (19). Then, with
the first equation of this system, we have the expression for
δVp(t) (equation (20)). Once we have those equations, we
can use F̂θ(t) and F̂ψ(t) to compute the values of δVy(t) and
δVp(t).

δVy(t) =
−F̂ψ(t) + C(eψ(t))

αyy − αpyαypα−1
pp

− αyp(F̂θ − C(eθ(t))
αppαyy − αpyαyp

(19)

δVp(t) =
−F̂θ(t)− αpyδVy + C(eθ(t))

αpp
(20)

For C(eψ(t)) and C(eθ(t)) we have chosen a propor-
tional derivative controller :

C(e(t)) = kpe(t) + kdė(t) (21)

With a desired double pole sd the kp and kd gains are :

kp = −s2d (22)
kd = −2sd (23)

Starting from a flatness-based controller, RMC require to
chose a order of derivation, ν, the α parameter and the time
window Tf used for estimation. Those parameters are ad-
justed based on trials and fails. The choice of α can be guided
by the model and the choice of Tf depends on the dynamic
of the systems and the measurement noise. Compared to the
research of a flat input and the computation of nominal trajec-
tory, the tuning of RMC parameters does not require a lot of
effort but can improve the flatness-based control, especially
in the case of partially know dynamics or imprecise model.

4 TESTS AND RESULTS

We now apply the control approach described in the pre-
vious section for Quanser Aero whose specifications are de-
scribed in Table I. The idea is to investigate the impact of
MFC feedback on flatness-based control in terms of uncer-
tain parameters.

To investigate the impact of MFC feedback on flatness-
based control, we leveraged the capability to modify the be-
havior of the Quanser Aero. The objective of the tests was
to track a step signal in pitch while maintaining yaw at 0 de-
grees. Both control laws require the reference signal to be
at least twice differentiable, thus the step signal was filtered
by a discreet second-order system. The relation between θref
(the reference) and θ∗ (filtered reference) and its first and sec-
ond derivative are given by equation (24) to (26) with Te the
sampling time of the Quanser Aero.

θ∗(t) =
θref (t) + (2 ∗ ω + 2 ∗ ω2) ∗ θ∗(t− Te)− ω2 ∗ θ∗(t2Te)

ω2 + 2ω + 1
(24)

θ̇∗(t) =
θref (t)− θ∗(t− T2)

Te
(25)

θ̈∗(t) =
θref (t)− 2θ∗(t− Te) + θ∗(t− 2Te)

T 2
e

(26)

The ω parameter is used to tune the filter. With ω = 300 the
input (θref ) and filtered input (θ∗) are presented figure 4.

to maximise the cases studied, the tests have been dived
in two categories :

1. Tests with a 10 blades nominal system (Figures 5 to 8)

2. Tests with a 2 blades nominal system (Figures 9 to 12)

In both cases the nominal trajectory computation and con-
trollers tuning where made on the nominal system then used
without any modification on the altered system. One the first
case (10 blades nominal system) we have studied the effect
of an under-efficient propellers and augmented friction. On
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Figure 4: Reference and filtered reference

the second one, the effects of over-efficient propellers where
tested.

The tuning of the two controllers for those both cases are
presented table 2. Since the objectives and dynamics are dif-
ferent in pitch and yaw regulation thus two different sizes of
time window are used. We have Tfθ = 0.1s and Tfψ = 0.5s.
We also used the same α parameters for the two RMC con-
troller : αpp = 0.35, αpy = 0.02, αyp = −0.02 and αyy = 1.

Table 2: Values of gains tuning
Gains 10 blades system 2 blades system
K1 −200 −480
K2 90 80
K3 −200 −480
K4 −90 −80
sθ 3 3.8
sψ 4.1 7.5

The gains presented in the table above where chosen to
ensure the best pitch trajectory following while trying to
maintain a reasonable disturbance rejection on yaw.

Since the feedback term for the flatness based controller
is only proportional to positions errors, the steady state error
in nominal cases was expected. Our objective is to study the
impact of parameters variation on both control laws, not there
trajectory tracking performances.

As shown in Figure 6 under-efficient propellers (yellow
line) increased the steady state error compared to nominal
case (red line). In the first 15 seconds the value of the er-
ror was increased by 13% and by 17% in the last 15 sec-
onds. Restricted-Model Control (Figure 5) achieved to nul-
lify this steady-state error, with nominal and under-efficient
propellers, while preserving a good behaviour in transient re-
sponse. This better response in pitch come at the prise of a
poorer disturbance rejection in yaw (Figure 7 for RMC and 8
for flatness-based control).

With increased friction (green line), flatness-based con-
trol have the same kind of result with a more important ef-

fect on transient response but a lower steady-state error on the
lasts 15 seconds (11%). Like on the previous test, the RMC
converge at the same pitch value than on the nominal case,
with some small oscillations on the transient response. To
follow the pitch trajectory despite this modification, the RMC
generate a higher control input, which leads to greater per-
turbation on yaw (with pics value of +16 degree and −13.5
degree for RMC, see Figure 5). The same effect is observed
on flatness-based regulation but with much lower pics value.

Our last tests where made on with a 2 blades nominal sys-
tem to tests the effect of over efficient propellers. Since the
propeller is less effective, the reference amplitude for pitch
was divided by two. With this lower amplitude, the cou-
pling effect is less important so the yaw response is great for
both controllers (error between−1 and 1 degree for RMC and
−0.5 and 0.9 degree for flatness-based controller). For pitch
trajectory following, the controller have better performances
in transient and steady-state response. But on the flatness-
based controller response, especially in figure 12, we can see
some regular oscillations on the yellow curve. With higher
feedback gains values those oscillations had lead to instabil-
ity. We did not had this problem with RMC. With this lower
reference output value we also had difficulties with the high
quantization step size of the Quanser Aero.

Figure 5: Pitch response, RMC, 10 blades nominal system

Figure 6: Pitch response, flatness controller, 10 blades nomi-
nal system

In all our tests, RMC has shown more robustness to pa-
rameters variation in the pitch response but at the price of a
poorer yaw response. This is show that the MFC feedback
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Figure 7: Yaw response, RMC, 10 blades nominal system

Figure 8: Yaw response, flatness controller, 10 blades nomi-
nal system

Figure 9: Pitch response, RMC, 2 blades nominal system

Figure 10: Pitch response, flatness controller, 2 blades nomi-
nal system

Figure 11: Yaw response, RMC, 2 blades nominal system

Figure 12: Yaw response, flatness controller, 2 blades nomi-
nal system

can improve a flatness based control law in when the model
is partially known.

5 CONCLUSION

In this paper, we have design a MIMO Restricted-Model
Controller for the 2 DoF Quanser Half-quad in order to ad-
dress the problem of uncertain parameters identification. The
proposed design was test on several cases and compared with
flatness-based control. Those tests have shown that Model-
Free Control can be used to improve the adaptive properties
of flatness-based control.

This preliminary study has produced encouraging results
and this control strategy will be applied on quadrotor MAV
on future work.
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Jüngel. Flatness of semilinear parabolic pdes—a gen-
eralized cauchy–kowalevski approach. IEEE Transac-
tions on Automatic Control, 58(9):2277–2291, 2013.

[13] Ezra Tal and Sertac Karaman. Accurate tracking
of aggressive quadrotor trajectories using incremen-
tal nonlinear dynamic inversion and differential flat-
ness. IEEE Transactions on Control Systems Technol-
ogy, 29(3):1203–1218, 2020.

[14] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971,
2015.

[15] Mircea-Bogdan Radac, Radu-Emil Precup, and Raul-
Cristian Roman. Model-free control performance im-
provement using virtual reference feedback tuning and
reinforcement q-learning. International Journal of Sys-
tems Science, 48(5):1071–1083, 2017.

[16] Michel Fliess, Cédric Join, and Hebertt Sira-Ramirez.
Complex continuous nonlinear systems: their black box
identification and their control. IFAC Proceedings Vol-
umes, 39(1):416–421, 2006.

[17] Michel Fliess and Hebertt Sira-Ramirez. An algebraic
framework for linear identification. ESAIM: Control,
Optimisation and Calculus of Variations, 9:151–168,
2003.

[18] Frédéric Lafont, Jean-François Balmat, Nathalie Pessel,
and Michel Fliess. A model-free control strategy for
an experimental greenhouse with an application to fault
accommodation. Computers and Electronics in Agricul-
ture, 110:139–149, 2015.

[19] Ouassim Bara, Michel Fliess, Cédric Join, Judy Day,
and Seddik M Djouadi. Toward a model-free feedback
control synthesis for treating acute inflammation. Jour-
nal of theoretical biology, 448:26–37, 2018.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 275


	Papers
	Restricted Model Control applied to the Quanser Aero with uncertain parameters


