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ABSTRACT

This paper deals with the control of a convertible
drone through the synthesis of Static Output
Feedback (SOF) model-based controllers. To
that end, a convex optimization algorithm based
on Lyapunov’s stability theory and Linear Matrix
Inequalities (LMI) available in the literature
is employed. To evaluate the algorithm’s
performance, given that it has never been
previously tested on realistic dynamical systems,
it is implemented on the experimental model
of the DarkO drone. Then, simulations of the
closed-loop dynamic of the drone are carried out
to assess the performance of the new design.
For a preliminary experimental validation, the
control architecture is implemented on the real
drone system and test flights focused on the
hovering phase and reference tracking in terms
of position are carried out.

1 INTRODUCTION

1.1 Forewords and problem description
Despite numerous technological advances, today’s drones

are still limited by their energy consumption and lack of
adaptation to complex urban environments. To reduce
these weaknesses, a new generation of drones has been
developed, namely the convertible drones that offer the
capability of taking-off and landing vertically, while having
a high aerodynamical efficiency in cruise.

The present article positions itself along a new direction
of research aimed at developing control architectures for
convertible UAVs (Unmanned Aerial Vehicles). The
different designs and control techniques of hybrid and
convertible VTOL (Vertical Take-Off and Landing) platforms
are presented and discussed in [1]. The decision of
employing a particular control scheme is mainly motivated
by its performance in stabilizing and controlling the plant’s
dynamics across multiple phases such as take-off, hovering,
transition, horizontal flight and landing.
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With respect to the controller synthesis process,
model-based or model-free/data-driven methodologies are
employed. Study [2] presents a detailed comparison between
model-based and model-free control. Model-based methods
[3, 4, 5] require sophisticated wind-tunnel characterization
as well as accurate modeling of propeller-wing interactions,
forces and moments of a partially stalled wing and of control
surfaces that is highly challenging and time-consuming.
As an alternative, model-free control [6, 7] does not need
sophisticated models, as it is generally based on sensor
measurements for estimating a large part of the dynamic
model. As a main drawback, such techniques use test
flight data to tune offline the control coefficients. There
are also methods like INDI (Incremental Nonlinear Dynamic
Inversion) [7] that integrate model-based and sensor-based
methods, but are limited by the lack of proof of convergence.

The controller synthesis approach that has been chosen
is a model-based one for obtaining SOF (Static Output
Feedback) controllers. The majority of controllers
implemented for this drone concept are data-driven ones.
As a result, designing model-based controllers is a real
challenge, having not been addressed exhaustively by the
research community. Additionally, considering the intended
operation of the DarkO drone in urban and populated areas, it
is conceivable that future certification may become necessary.
In such a scenario, a model-based control architecture
significantly streamlines the certification process.

SOF represents the simplest control law architecture,
since only static gains are implemented in the closed loop for
generating command signals from measured states. In brief,
the implementation is straightforward. Moreover, the fact
of explicitly using measurements instead of state variables
makes this type of control law extremely attractive from an
engineer’s point of view.

Beyond the apparent controller simplicity, the stabilizing
SOF gain synthesis is a well-known NP-hard control problem
[8] that cannot be solved by classical synthesis tools [9]. This
NP-hardness feature comes from the BMI (Bilinear Matrix
Inequality) problem formulation. Let us note that any fixed
or low-order dynamic controller can be reparametrized as
a SOF [10],[11], making this controller structure relatively
versatile. More specifically, for a dynamic controller the
problem is recast as SOF synthesis by considering the state
space representaion of the controller as gain matrices to be
optimized. Due to the NP-hardness of the SOF problem, it
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is difficult to implement a systematic method that can either
find a solution to the SOF problem or evaluate the feasibility
problem. In the literature, the approaches are mainly based
on either non-smooth optimization techniques for obtaining
a stabilizing controller under structure constraints [12] or on
Lyapunov’s stability theory [10], where LMIs are iteratively
solved, to treat the BMI original problem. The LMI-based
approaches are of interest, since the same framework is used
for robust control. Furthermore, the methods for designing a
SOF controller can be easily extended to the uncertain and
robust (R-SOF) case for a polytopic model or multimodel
representation.

1.2 Outlines

The convertible drone design, having a low research
maturity in the field of Automatic Control, presents a high
degree of potential novelty that is exploited in this article. The
main contributions are represented by the implementation
of a mathematical formulation for model-based controller
synthesis on a practical case study. Thus far, this approach
has been tested and evaluated only on theoretical cases [13]
with dynamic models that did not reflect real-world systems.

The proposed method for controlling the studied
convertible drone model is based on synthesising a SOF
controller, that is obtained by algorithmically converting the
non-convex BMI problem to 3 auxiliary convex problems i)
a State Feedback (SF) problem, ii) an Output Injection (OI)
problem, and iii) a State Injection (SI) problem. Solving
the SF, OI, and SI problems are necessary conditions for the
existence of a solution for the SOF problem. Consequently,
solving each of the above problems is addressed through a
3-phase algorithm presented in section 3. This algorithm
is implemented on DarkO’s augmented dynamics which are
incorporated into the open loop to enforce a desired shape,
akin to the principles of the loop shaping method [14]. This
drives to multiple guarantees, namely in performance, with
open-loop high gain at low frequency, and in robustness, with
open-loop weak gain strategy at high frequency while also in
satisfying the reference tracking requirement.

The resulting SOF controllers for the augmented
dynamics will be validated through time-domain simulations.
Moreover, the majority of research articles that introduce
control system solutions for convertible drones are limited
to simulation-only validation, whereas in this article, the
validation will also be conducted experimentally through real
flight tests with an experimental model of the DarkO drone.

The article is organized as follows. The general
methodology is introduced in section I. In section II,
the non-linear and linear dynamics modeling is presented.
Section III, details the deterministic iterative algorithm for
SOF design that will be implemented, as well as the plant’s
augmentation process. In section IV, the results of the
controller synthesis are analysed through time-domain as well
as experimental simulations, by implementing the designed

control laws directly on the real system.

1.3 Notations

He {X} = X + XT , (.)T is the transpose of a matrix
while the identity matrix and the null matrix of dimension
p read, respectively, Ip and 0p, (X)◦ is the full rank
matrix s.t. X◦X = 0, (X)⊥ is the full rank matrix s.t.
XX⊥ = 0. B and I are the body and inertial reference
frames, respectively, while xb, yb, zb and x0, y0, z0 are their
associated axis systems.

2 MODELING OF DARKO DYNAMICS

The unmanned VTOL platforms are mainly split into
tailsitter-, tiltrotor-, and tiltwing-VTOL aircraft. The model
that will be used as a study case is the DarkO drone, a
micro convertible tail-sitter flying wing, developed at ENAC
Toulouse Fig.1. It is fitted with two propellers (shown
in black) that generate thrust on the longitudinal axis and
moments around the yaw axis, together with two control
surfaces, namely elevons (shown in blue) that can be operated
independently for generating moments around the pitch and
roll axis. The dynamics have been modelled in previous
research studies [15] and flight tests have been conducted [5]
using the INDI method.

Figure 1: DarkO drone

It has to be stated that the dynamics on the DarkO drone
are highly nonlinear. This is due to the aerodynamic forces
and moments that vary with the square of the airspeed v2,
as well as couplings between actuators, notably the yawing
moment generated by an elevon deflection, that varies with
the airspeed of the flow over the control surface which in turn
depends on the angular speed of the propeller. Additional
nonlinearities emerge from the nonlinear dynamic of the
quaternion q as well as products between the states (for
example wbxwby , wbywbz) or higher order states (such as
w2
b x). There are even nonlinearities that are not taken into

account due to their intrinsic modeling complexity. An
example would be the stall phenomenon that appears over a
fraction of the wing area during the hovering phase.

The nonlinear model of the DarkO drone is represented
by the following equations:
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ṗ = v

v̇ = 1
mR(q)

∑
Fb(x, u, w) + g

q̇ = 1
2q ⊗ ωb

ω̇b = J−1
∑
Mb(x, u, w)− J−1[ωb]×Jωb

(1)

where x =
(
p v q ωb

)T
- state vector, u =(

ω1 ω2 δ1 δ2
)T

- command vector, p ∈ R3 - position
of the centre of mass in the inertial frame, v ∈ R3 - velocity,
w - external wind perturbation, g =

(
0 0 g

)T
- (constant)

gravity vector, q - unit quaternion characterizing the attitude,
ωb - rotational speed in the body frame, Fb and Mb - forces
and moments matrices, m - mass and J - inertia matrix, R -
rotation matrix, p ⊗ q - quaternion product, [a]×b = a × b -
cross product conversion to matrix multiplication.

Quaternions are justified by the tilt-body nature of the
UAV that calls for a global numerically stable formulation
of attitude. The linearization is conducted around an
equilibrium point that corresponds to a particular wind speed,
obtaining a discrete set of LTI models. The equilibrium point
for the trimming that corresponds to a wind speed equal to 0
is defined by the following system:





p = pe

v = 0

q =
(

1√
2

0 1√
2

0
)T

ωb = 0

u = mg

(1−Swet
4Sp

Cd0)

(
1 1 0 0

)T

(2)

The linearized dynamic is characterized by the state
vectors in (3) and by the state-space representation in (4).
Note that B =

[
Bu Bw

]
where Bu and Bw are the actuator

and wind input matrices. For more details related to the
nonlinear, linear dynamic modeling and equilibrium points of
the DarkO drone, the reader is directed to the articles [5, 15].

x̃ =
(
p̃ v ϵ̃ ωb

)T
=
(
p− peq v ϵ− ϵeq ωb

)T

ũ = u− ueq
(3)

˙̃x = Ax̃+Bũ

y = Cx̃
(4)

3 SOF CONTROLLER SYNTHESIS

The synthesis of a SOF controller poses a non-convex
problem due to multiplications between decision variables,
resulting in bilinear matrix inequalities. This complexity
renders the optimization problem NP-hard. Referring to the
BMI formulation in [16], various equivalent reformulations
are conducted in [13], leading to the matrix inequality
presented in Eq. 5. The proposed method here is extracted
from [16]. For further insights into the methods employed,

such as the S-variable approach and dual calculations, readers
are directed to [16].
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He
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−
(
λ

[
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0p−n,n

]
+M

)

−A


S1 +




0
S2

BZ


 [0 I −HT

]




(5)

F = −ZS2
−1

[
Ip

0n−p,p

]
(6)

Even though, this new reformulation is still characterized
by non-convexity, it is of great interest because it has been
proved that if a solution is found for the system in (5) when
λ = 1,M = 0 and S2 is non-singular then, a SOF gain matrix
F can be computed, that guarantees closed-loop stability [13].
This gain matrix, not being directly optimized in the convex
synthesis, is obtained using (6).

This proof serves as the overarching objective for the
optimization process. Addressing the challenges stemming
from the non-convex nature of problem 5 requires specific
mathematical and technical advancements. A mathematical
formulation introduced in the literature has shown promising
initial theoretical results. The algorithm, to be detailed in the
following subsection, will be applied to the DarkO drone’s
dynamics. The resulting analysis will draw conclusions
regarding the algorithm’s effectiveness in practical test
scenarios.

3.1 Deterministic Iterative Algorithm for SOF Design

The problem of synthesising a SOF gain, is characterized
by its intrinsic non-convexity nature that is accompanied
by computation difficulties related to NP-hard problems.
This, coupled with an inherent complexity that comes
from the impossibility of optimizing all of the decision
variables simultaneously, makes the process of splitting
the non-convex problem into multiple auxiliary convex
subproblems extremely appealing. The bilinear matrix
inequality (5) will be employed to translate these goals into
an optimization framework. Each particular goal is attained
by optimally fixing a part of the decision variables, while
refining the rest through an iterative process. For designing
a SOF controller, a 3-phase algorithm introduced in [13] will
be implemented Fig. 2 that takes as input the A, B, C matrices
of the plant’s linearized dynamics.

Figure 2: Structure of Optimization Algorithm

3.1.1 Initialization Phase

The objective of the first phase is essentially to provide an
initial estimate for a state feedback gain matrix controller K
that stabilizes the closed loop ẋ = (A+BK)x. For this, the
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strategy taken is to fix the decision variables λ, M, H present
in (5) in the following way:

λ = λ = 0

M =M0 =

(
C◦C

C⊥T

)

H = H0 = JM−1
0

J = (−µ− h)I,

(7)

where, h is a positive scalar and −µ is the maximum
real part of the eigenvalues of A. The feasibility study that
is conducted in the initialization phase is the following:

P ≻ 0

He







0 0 P
0 0 0
P 0 0





 ≺ He








I
−M0

−A


S1 +




0
S2

BZ


 [0 I −HT

0

]



(8)

If (8) is feasible for a combination of the decision
variables S1, S2, Z and for the Lyapunov certificate P, then an
initial guess of a stabilizing state feedback gain K is found,
and one can pass to the iteration phase. On the other hand, if
a solution is not found, the parameter h is increased by 1 and
the initialization phase is executed again. This phase solves
the (SI) and (SF) problems. The outputs of this phase are:

S1.0 = S1

K̂0 = −ZS2
−1

K = −ZS2
−1M0

(9)

3.1.2 Iteration Phase - Step k,1

This phase comprises two iterative steps. In the first step,
the optimization variables λλλ and M in 5 previously fixed
during initialization, are now treated as decision variables. To
maintain convexity, the slack variable S1 is set at the value
S1,0S1,0S1,0 determined in the initialization phase. Then, system (10)
is solved.

P ≻ 0,

[
(1− λ)I MT

M I

]
≥ 0, λ ≥ 0

He







0 0 P
0 0 0
P 0 0





 ≺ He








I

−
(
λ

[
C

0p−n,n

]
+M

)

−A


S1,k−1 +




0
−I

BK̂k−1


 [0 −S2 Y T

]




(10)
In (10), two matrix inequalities appear, in addition to

the Lyapunov certificate inequality and the inequality (5).
These additional constraints, contribute towards achieving the
objective of the iteration phase which is to find a solution for
(5) where the variables λλλ and M converge to the values of 1
and 0, respectively, this being a mandatory requirement for
meeting the main optimization goal. This is accomplished
by setting the maximization of λλλ as an objective in the
optimization solver. The second matrix inequality works on
constraining the norm of M and decreasing it to 0, as λλλ
increases to 1. The third inequality is merely a constraint on
λλλ to be positive.

If a solution is found for (10) and if for this solution 1−λ
is lower than a specific tolerance, this means that one can pass
on to the third and last phase, namely the validation. The
outputs for this phase are:

λk = λ

Mk =M

HT
k = S2

−1Y T
(11)

If not, there is a second step in the iteration phase.

3.1.3 Iteration Phase - Step k,2

Step k,2 is essentially an initialization step in disguise.
Similar to the first phase, where λ, M and H were fixed as
inputs to generate a stabilizing feedback gain K, the second
step fixes the same decision variables with updated values
from step k,1.

The optimization problem that needs to be solved in this
phase is the following:

P ≻ 0

He







0 0 P
0 0 0
P 0 0





 ≺ He








I

−M̂(α)
−A


S1 +




0
S2

BZ


 [0 I −HT

k

]




(12)

M̂(α) =

(
(1 + α(λk − 1))

[
C

0p−n,n

]
+ αMk

)
(13)

In this step, a new term, M̂ (α) appears, dependent on a
new decision variable α. The goal is to minimize α using the
bisection method, converting the non-convex problem into a
convex one. Ideally α converges to 0, signaling the end of this
iteration phase and progression to the final validation phase.
If α ≈ 0 within a certain tolerance, (13) simplifies to (14) and
as a result, the values of the decision variables for the solution
that has been found for (12) that correspond to the step k,2
are also values for which (5) is solved when particularized for
λ = 1 and M = 0. Finding a solution for (5) with λ = 1 and M
= 0, enables the computation of a stabilizing SOF controller.

M̂(α) =

(
(1 + α(λk − 1))

[
C

0p−n,n

]
+ αMk

)
α≈0
=

[
C

0p−n,n

]

(14)
If at step k,2 α is not smaller than a fixed tolerance, the

algorithm will start a new iteration step at k,1. The outputs of
the current phase are:

αk = α

K̂k−1 = −ZS2
−1

S1,k = S1

(15)

3.1.4 Validation Phase

In cases where the iteration stage provides solutions for which
λλλ and M are exactly equal to 1 and 0, a validation phase
is not required because a SOF controller can be computed
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directly. In practice, the algorithm exits the iteration phase
with solutions forλλλ and M close to 1 and 0, due to limitations
of the optimization solvers and numerical accuracies. In these
cases, the conditions for achieving the main optimization
objective are not exactly met. As a result, a validation phase
is necessary, where the problem to be solved is defined by
(16) where the variables λλλ and M are set to 1 and 0 and H is
set to Hk (obtained during the iteration phase). If a solution
is found, the gain matrix F can be constructed with (6) that
is guaranteed to stabilize the closed loop (A+BFC). This last
phase, provides the solution to the (OI) and (OF) goals.

P ≻ 0

He







0 0 P
0 0 0
P 0 0





 ≺ He








I

−
[

C
0p−n,n

]

−A


S1 +




0
S2

BZ


 [0 I −HT

]




(16)

3.2 Plant Augmentation and Control Architecture

The control architecture for the DarkO drone is designed
to stabilize it during hovering, both with and without
external disturbances. For example, to counteract a headwind
affecting linear velocity along the x[b] and z[b] axes and
generating a moment about the y[b] axis, the control scheme
uses the ailerons and propellers symmetrically to generate
a compensatory moment and force. Integral action is
employed to counteract the force along the z[b] axis, ensuring
asymptotic convergence to the desired force using two
integrators, one for the motors and one for the elevons. Other
common control methods for this drone configuration include
PID scheduling, decoupled speed and attitude controllers, and
nonlinear controllers with command allocation. However,
none of these approaches directly address wind effects.

The synthesis of a SOF controller for the augmented
DarkO dynamics takes its inspiration from [10] where it is
shown that a dynamic output compensator of order q ≤
n (n-plant order), can be converted to a static output
feedback through state-space augmentation. In our case,
dynamic terms such as integrators and filters are added to
the plant dynamics, resulting in an augmented state-space for
which a static feedback law comprised of a pre-compensator
static gain matrix will be synthesised. The implemented
architecture, presented in Fig. 3, is a reformulation of the
control law presented in [17]. It is composed of the linearized
DarkO drone dynamic block, the saturation block for the two
propellers and the two elevons that introduces limitations for
the angular speed and angular rate of the electrical motors
as well as angular deflection and angular rate for the control
surfaces. The introduction of the actuator dynamics is subject
for future studies. The output selection matrix eliminates the
measurement of the pitch angle state, θ.

For control design, a PI-like controller structure is
employed to minimize static error and enhance rejection
of external disturbances. This is done by adding
pre-compensator filters at the input of the system, based on

Figure 3: Plant Augmentation

the open-loop shaping methodology [14] where an integrator
is added to ensure performance (high gain) at low frequency,
which corresponds to the tracking specification, and a
second-order filter is added to ensure that the controller is
strictly proper and to be robust with respect to neglected
dynamics thanks to a roll-off behaviour. The filter’s cutoff
frequency is set at approximately 5 Hz to align with
closed-loop dynamics and reject white noise in measured
signals. For limiting the number of integrators to 2 (one that
generates the integrative command for the two propellers and
the other one for the two elevons) the outputs of the integrator
block are doubled by an allocation matrix

∑
. Implementing

a second order filter comes with the extra benefit of avoiding
a direct feed-forward term, that may amplify unwanted sensor
noise. The SOF matrix F comprises the gain matrices H and
K for the integrative and proportional action, respectively.
The equations and the state-space representation of the
augmented plant are found in (17) and (18).

ẋi = u1

u =
∑

xi + yfilter =
∑

xi + Filter · u2
ẋ = Ax+Bu = Ax+B(

∑
xi + yfilter) = Ax+B

∑
xi +BCxfilter

∑
=




1 0
1 0
0 1
0 1




[
u1
u2

]
= Fe = F

([
ref
⊬8×1

]
− y
)

(17)


ẋ
ẋc

ẋfilter


 =



A B

∑
BCfilter

0 0 0
0 0 Afilter






x
xc

xfilter


+



0 0
1 0
0 Bfilter



[
u1
u2

]

y =
[
C 0 0

]



x
xc

xfilter




(18)
Where xi ∈ R2 - integrative states, xf ∈ R4 - filter states,

r ∈ R3 - reference signal, y ∈ R11 - measured states and u
∈ R4 - plant input.

4 RESULTS

4.1 Simulation Results
The approach from section 3.1 was applied to the

augmented system from section 3.2, focusing on the
linearized dynamics for a wind speed of 0 (hovering
scenario). This resulted in four stabilizing controllers
for h=12,13,14, and 15, with h varying between 1 and
40. Multiple iterations with different h values, serving as
various initialization points for the optimization algorithm,
are necessary to enhance the likelihood of convergence.

Figure 4 shows the closed-loop temporal response of
the four controllers, with reference steps for the x-axis
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at 5s, y-axis at 90s, and z-axis at 40s. All controllers
effectively stabilize the closed-loop dynamics and track
position references on the XYZ axes. The response is slow on
the X and Z axes and fast on the Y axis. Notably, a position
step on one axis does not cause significant offset or change on
the other two axes, indicating strong decoupling between the
XYZ position states. Additionally, the actuators were never
saturated.

Figure 4: Closed-Loop response of SOF controllers - Linear
Dynamics

The first subplot of Fig. 5 shows that the state θθθ
experiences increasing oscillations as h increases. While the
pitch angle θθθ is not directly controlled, it naturally converges
to 0 as the other states stabilize, indicating hovering flight
without wind. The second subplot demonstrates that
for dynamics linearized around a specific wind speed, θθθ
converges to a non-zero value, compensating for external
disturbances.

Figure 5: Closed-Loop temporal response - theta state

For analysis purposes, Eq. 19 and 20 present the
gains of the synthesized controller F (block illustrated in 3)

comprising the matrix gains H and K for h=12 and linearized
dynamics at 0 wind speed. By taking a more attentive look
at the gain matrix K that outputs 4 command signals used for
the asymmetric or symmetric control of the drone actuators,
one can observe that for the 1st and 2nd rows (that generate
a demand of thrust of the two propellers) as well as for 3rd

and 4th rows (that generate a demand for a deflection angle
for the two elevons) are either nearly equal or opposite, with
few exceptions. This pattern emerged naturally from the
optimization process without any constraints, reflecting an
intuitive and coherent alignment with the drone’s dynamics.

H =

[
3.5e− 06 −3.0e− 07 1.5e− 02 −6.9e− 06 −7.4e− 06 4.4e− 01
−2.0e− 02 −7.5e− 06 1.6e− 05 −2.0e− 01 4.4e− 05 −1.1e− 04

1.8e− 04 1.1e− 04 −8.4e− 05 −8.6e− 05 −2.3e− 04
− 9.2e− 05 −9.1e− 05 7.4e− 06 7.6e− 01 −3.9e− 05

] (19)

K =




7.6e− 03 −2.0e+ 01 9.9e+ 00 3.1e− 02 −4.5e+ 01 8.2e+ 01
5.4e− 03 2.0e+ 01 9.9e+ 00 8.8e− 03 4.5e+ 01 8.2e+ 01
−4.2e+ 00 −3.2e− 01 8.7e− 03 −4.5e+ 01 −4.4e− 01 −3.1e− 02
−4.2e+ 00 3.2e− 01 4.8e− 03 −4.5e+ 01 4.3e− 01 3.3e− 02

− 3.1e+ 02 −3.1e+ 02 6.4e− 01 3.0e− 03 −1.0e+ 02
3.1e+ 02 3.1e+ 02 −6.5e− 01 −1.9e− 03 1.0e+ 02
− 1.2e+ 01 1.6e+ 00 −3.1e+ 01 3.9e+ 01 −1.6e+ 00
1.2e+ 01 −1.7e+ 00 3.1e+ 01 3.9e+ 01 1.6e+ 00




(20)

4.2 Experimental Results
For experimental validation, the designed controllers

and architecture were tested on the real DarkO drone
model built at ENAC Fig. 6. DarkO is assembled from
multiple 3D printed Onyx parts (a robust material comprising
omnidirectional carbon fibres). Flight tests took place
in ENAC’s volière, equipped with an Optitrack motion
capture system providing position and attitude data at 40Hz,
eliminating the need for a GPS sensor. Speed is obtained
by a finite difference between the position. Data fusion
algorithms, including Invariant Filters [18, 19], combined
data from Optitrack (position, speed and attitude) and the
DarkO drone’s IMU unit for improved state estimation. This
estimate is used to create the output vector y used by the
control law (17). Given the architecture of the control
loop, the estimation must be of very high quality with the
lowest possible delay. Paparazzi UAV open-source software
and hardware packages were utilized [20] and the modular
nature of Paparazi permit to use the existing implementation
of the invariant filter to estimate the DarkO state vector
and to add a stabilisation module based on the control law
described above (see 3.2). This software is embedded in
an autopilot designed and manufactured at Enac, an Apogee
autopilot board1 for processing. The autopilot board sampled
command and control laws at 500Hz, generating appropriate
control commands to achieve the desired flight manoeuvres
and store all the data for posterior analysis.

The following experimental flight tests mark the first
and only successful simulations in ENAC’s volière where
controllers relying exclusively on model-based synthesis
methods were used to control a convertible drone. Prior

1Product data sheet - https://wiki.paparazziuav.org/
wiki/Apogee/v1.00
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Figure 6: DarkO Drone experimental model

Figure 7: DarkO drone during an experimental flight test

flights for this drone type utilized combined model– and
sensor–based control designs like INDI algorithms. Each
flight starts with the drone taking off and stabilizing at a
reference position using an INDI controller. After reaching
the desired hovering location, the INDI controller is replaced
with the model-based controller. Figure 8 shows the flight
test results of one of the four synthesized controllers for
the designed control architecture. Figure 7 depicts the
DarkO drone during its test flight. All four controllers were
tested and validated on the real system, demonstrating stable
performance and accurate position tracking on all three axes.

As it was also observed in the simulations, on the X
and Z axes, the time response is relatively high whereas
on the Y axis, the time response is drastically quicker, due
to the strong differential actuation on this axis backed up
by the fast actuator dynamics. On the Z axis, the switch
from the INDI controller to the synthesised controller, results
in a relatively important vertical descent of the drone. As
a consequence, further tuning and modeling needs to be
performed in order to correct the state and command input
initialization values corresponding to the equilibrium point.
The dynamic of the drone on Z is characterized by small
oscillations around the reference position, that can also be
observed in the command signal of the angular speeds of the
propellers, illustrated in Fig. 8. These reduced oscillations
are due to the actuator dynamics not being considered in
the control law. This problematic will be studied in the

Figure 8: Flight Test, Closed-Loop Response and Command
Input, h = 12

future, particularly with the use of a motor speed controller
(see AM32-MultiRotor-ESC-firmware 2). It’s worth noting
that the optimization algorithm’s primary objective is to
achieve closed-loop stabilization, disregarding performance
or robustness criteria. During experimental flights, the
controller did not saturate the actuators (see Fig. 8).

5 CONCLUSIONS
A convex optimization algorithm, utilizing the LMI

framework and Lyapunov’s stability theory, was employed
to synthesize SOF controllers for the DarkO convertible
drone model. This model-based synthesis technique
effectively stabilized the closed-loop dynamics of the
augmented plant, ensuring satisfactory temporal response
and reference tracking without actuator saturation. Despite
incomplete modeling of nonlinear phenomena, the controllers
demonstrated robustness during initial experimental

2https://github.com/FlorianSan/
AM32-MultiRotor-ESC-firmware
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demonstrations on the DarkO drone model. With the
designed SOF controller matrices and command law
structure, successful experimental flights were conducted for
hovering and trajectory tracking. This outcome serves as a
solid proof of concept for the developed control law in terms
of performance and robustness.
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