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ABSTRACT

This work describes a control system for a tail-
less insect-like flapping wing aerial vehicle. The
control system is initially implemented in simu-
lation. An experimentally validated rigid wing
quasi-steady aerodynamics model represents the
vehicle flight dynamics in simulation. A cas-
caded PID architecture is used to control vehi-
cle flight velocity and attitude. The PID tuning
process is automated through a constrained non-
linear optimization process. The attitude estima-
tion process uses onboard accelerometer and gy-
roscope readings. The accelerometer readings
require a low-pass filter to ignore noise from
flapping wing related body pitching oscillations.
The performance of a complementary filter and
extended Kalman filter are considered for the
attitude estimation strategy. The flight simula-
tion controller successfully stabilizes the vehicle
attitude and follows reference flight maneuvers
around hover. The attitude estimation and atti-
tude controller are verified experimentally on a
single cage gimbal setup that isolates one rota-
tional degree of freedom. The drone stabilizes
itself around the upright position, and success-
fully maintains a reference attitude.

1 INTRODUCTION

The capability of flying insects, bats and small birds to
maneuver and navigate with ease inside cluttered and con-
fined environments has inspired the development of insect-
like flapping wing aerial vehicles (FWAVs). These vehicles
produce thrust by mimicking the complex wing motion of
their natural counterparts. Unsteady aerodynamic phenom-
ena that occur in low Reynolds number flapping flight pro-
duce significantly higher lift values than fixed wing or rotary
wing motion [1]. Advances in lightweight miniaturized elec-
tronics have enabled the construction of insect-like FWAVs
ranging in size from the 102 g Flapper Drone [2] down to
the 80 mg Robobee [3]. Like insects, the wing stroke mo-
tion takes place inside the body horizontal plane, which gives
the FWAV the capacity to hover in place. Because of their
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small size, lightweight soft material wings and relatively low
wing tip speeds, insect-like flyers are at lower risk of (caus-
ing) damage in the event of a crash. Instead, these FWAVs
tend to bounce off of the object they collide with, after which
they continue their flight [2, 4]. Also, the flapping wing mo-
tion makes the wings unlikely to tangle on loose objects like
cables and plant leaves. The combination of hovering flight
and collision resilience makes insect-like FWAVs especially
well suited to be deployed inside confined and cluttered envi-
ronments. Possible applications are the inspection of difficult
to reach industrial installations even in small cavities, crop
health monitoring inside greenhouses, and the exploration of
partially collapsed buildings after a natural disaster.

The test vehicle is the KUlibrie, a tailless two-winged
flapping wing micro air vehicle with passive wing inclina-
tion that is in development at KU Leuven [5, 6]. The ve-
hicle is inspired by the propulsion principles of humming-
birds and insects. The KUlibrie fits within a group of tail-
less, two-winged insect-like FWAVs of similar size, gener-
ally with a 10-25 g body mass and 15-20 cm total wingspan
[7]. Maintaining controlled flight for this group of vehicles
is an ongoing challenge. Insect FWAV flight is inherently
unstable [8, 9], so a flight controller needs to continuously
perform small control actions to stabilize the vehicle. Also,
the small size imposes stringent weight restrictions that im-
pede the number of actuators and onboard sensors and the
amount of computing power that can be installed. Some ex-
amples of FWAV prototypes successfully maintain free flight
around hover [2, 3, 4, 5, 10]. However, further improvements
are required in robustness against modeling inaccuracies or
uncertainties and time-dependent flight characteristics before
the technology is ready for use in real-world applications.

This work employs a free flight simulation environment
to evaluate attitude estimation and flight control of an insect-
like FWAV around hover. Attitude estimation and control are
validated on an experimental setup, with the prototype drone
mounted inside a gimbal system. The control architecture in
this study is based on PID, because of its common use as a rel-
atively simple yet effective technique with low computational
load. The simulation environment and the gimbal setup will
later serve as building blocks for the future development and
evaluation of more advanced control techniques, which can
then be compared to the PID controller performance.
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Figure 1: KUlibrie drone prototype, with a 2 euro coin added
for size reference.

2 KULIBRIE FLAPPING WING SYSTEM

2.1 Design and key parameters
Figure 1 shows the latest KUlibrie prototype. The stroke

motion of each wing is actuated independently by a brush-
less DC-motor, connected to the wing by a direct drive gear
transmission. Two torsion springs are mounted at the root of
the wing stroke axis. The spring stiffness is set such that the
natural frequency of the flapping wing system is close to the
stroke frequency, resulting in a resonant effect that improves
driveline performance. Kinetic energy is stored in the springs
as potential energy, and released again at the start of the sub-
sequent stroke. The driveline design and performance are
studied in detail in [5, 6]. The wing inclination motion, which
is dominant in determining the value of the angle of attack, is
passive. It is the result of the interaction between aerody-
namic forces on the wing surface, counter-torque from a rub-
ber band attached at the base of the wing, and inertial effects.
This rubber band also initiates the pronation and supination
at the end of upstroke and downstroke respectively, ensuring
a positive angle of attack at the start of the next stroke [11].

Drone mass is 15.8 g and total wingspan is 195 mm. Ta-
ble 1 lists key design parameters. The body frame is con-
structed with carbon fiber and 3D-printed acrylic resin com-
ponents. The wings feature a 10 µm Mylar membrane, rein-
forced with a carbon fiber veined skeleton. The stroke fre-
quency is set at 19 Hz. The current prototype has an onboard
‘Seeed Studio XIAO nRF52840 Sense’ processing unit with
a built-in 3-axis gyroscope and 3-axis accelerometer IMU. A
100 mAh LiPo battery provides the system with sufficient en-
ergy for approximately 90 seconds of operation.

Compared to FWAV prototypes that use linkage mech-
anisms and one motor to drive the motion of both wings,
the two decoupled motors on the KUlibrie provide greater
control over its wing motion. The ability to alter the stroke
amplitude and mean stroke angle for each wing individually
theoretically provides sufficient controllability for free flight
maneuvering without the need for additional drivers. Instead,

flight can be realized by only control of the wing stroke mo-
tion. This pure wing stroke motion-based control strategy is
similar to that of the Purdue Robotic Hummingbird [12] and
the Robobee [3]. The simplicity of the direct drive stroke
motion-based control strategy lends itself well for further ve-
hicle down-scaling, and may be necessary for truly insect
scale FWAV prototypes [3]. A challenge that comes with this
control strategy is that the same motors responsible for pro-
viding vehicle thrust are also used to perform attitude control
and velocity control. This means that some of the available
payload capacity is sacrificed for flight maneuvering. Care
must also be taken that the combined control signals do not
saturate the motors. The control signals and prevention of
motor saturation are discussed further in the next sections.

Parameter Value Unit
Total wingspan 195 mm
Single wing length 83.5 mm
Mean chord length 20 mm
Aspect ratio 4.175 -
y-distance CoG - CoR 10 mm
z-distance CoG - CoR 29.5 mm
Total body mass 15.8 g
Single wing mass 0.2 g

Table 1: Drone body and wing design parameters.

Figure 2: Body translation components [u, v, w] and rotation
components [p, q, r], defined with respect to the body-fixed
coordinate system xyz.

2.2 Flight simulation model

A discrete-time flight simulation model in MATLAB
Simulink emulates the flapping wing drone prototype. Model
input parameters include the drone dimensions, inertia (cfr.
Table 2) and motor characteristics. Wing stroke motion is
calculated based on the motor voltage inputs and wing di-
mensions [6]. Wing inclination and deviation motion are
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described based on earlier experimental results [6]. Aero-
dynamic force production is computed using an experimen-
tally validated rigid wing quasi-steady aerodynamics model
[6, 13]. The discrete time step of the simulation is set to 1%
of the stroke cycle period to capture the fast body oscillations
that are present in two-winged FWAV systems, occurring at
stroke frequency [7, 14]. Finally, body motion is computed
using rigid body equations of motion. The drone body has
three translation (u, v, w) and three rotation (p, q, r) degrees
of freedom (DOFs), resulting in the dynamics model:

ẋ(t) = f(x(t),V(t)), (1)

with x(t) =
[
u(t) v(t) w(t) p(t) q(t) r(t)

]⊤
, as in-

dicated in Figure 2, and V(t) =
[
Vleft(t) Vright(t)

]⊤
the

voltages applied to the left and right wing, respectively. The
over-dot indicates a derivative with respect to time variable
t. The explicit dependence on t is further omitted where it is
implicitly clear. The reader is referred to [6, 14] for a detailed
derivation of the dynamics model f in Equation 1.

2.3 Control actions

(a) Thrust (b) Roll

(c) Pitch (d) Yaw

Figure 3: Top view of control action effects on stroke ampli-
tude and mean stroke angle (solid black line). Stroke ampli-
tude determines the mean lift force. A darker shade indicates
a higher lift force.

The voltages V are applied to the two motors in the form
of block waves. The block waves for the left and right wing
are set independently. A non-symmetric setting generates
torque on the drone body. Specifically, the direct drive con-
figuration controls both the stroke amplitude and the mean
stroke angle for each wing separately through a square wave

with variable amplitude and mean value:

Vleft(t) =

{
VI0 + dV + V0 τ < 0.5 + ds

−(VI0 + dV − V0) 0.5 + ds < τ < 1
(2a)

Vright(t) =

{
VI0 − dV + V0 τ < 0.5− ds
−(VI0 − dV − V0) 0.5− ds < τ < 1

(2b)

τ = ft represents normalized time, ranging from τ = 0 (start
of upstroke) to τ = 1 over one full stroke cycle. ds marks a
deviation from the center of the time interval of a full stroke.
The individual components of Equation 2 affect the motion
of the vehicle in the following way (see also Figure 3):

Thrust: An increase/decrease in motor voltage amplitude
VI0 results in an increase/decrease in lift production. If the
increment in stroke amplitude for the two wings is equal,
net torque is zero and only total lift production changes.

Roll: An asymmetric increment dV of the motor voltage
amplitudes increases lift produced on one wing, and de-
creases lift on the other wing. This difference in lift pro-
duction results in a net rolling torque.

Pitch: A shift in mean motor voltage V0 results in a sym-
metric change in the mean stroke angle. This produces a
longitudinal shift of the mean lift vector for each wing. The
result is a net pitching torque.

Yaw: A shift ds in duration of upstroke versus downstroke
also shifts the mean stroke angle. Because the wing stroke
axes do not coincide with the drone center of gravity (CoG),
the length of the moment arm between the aerodynamic
drag vector on each wing and the drone CoG depends on
the stroke angle. When an asymmetric shift in mean stroke
angle is applied, this time-varying moment arm for the two
wings results in a net yawing torque. For small alterations,
the yawing torque scales approximately linearly with the
shift in mean stroke angle [15].

The four control actions result in an underactuated flight
system. The rolling motion is coupled with lateral translation,
and the pitching motion is coupled with longitudinal transla-
tion. The driveline configuration also allows for control ac-
tions based on stroke frequency modulation. However, the
principle of resonance support sets a number of constraints
on system control. Deviation of the actuation frequency from
the set resonance frequency affects both system efficiency and
system response [6].

3 CONTROL METHODOLOGY

3.1 Cascaded flight controller layout
Figure 4 shows the controller layout incorporated into the

free flight simulation. An outer-loop velocity controller com-
putes the reference input for an inner-loop attitude controller,
based on the desired flight velocity. The attitude controller
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Figure 4: Schematic overview of the closed-loop control architecture in the flight simulation environment.

uses the output of an attitude estimation algorithm that is
based on onboard IMU readings. The attitude estimation and
control methods are discussed in the next sections. The cas-
caded flight controller may be expanded to be preceded by
an additional outer-loop position controller that computes ve-
locity controller inputs based on a reference flight trajectory.
The expansion to include position control is highlighted in
dashed lines in Figure 4. Since the onboard IMU does not
measure the vehicle velocity, the velocity controller directly
uses the actual velocity components [u, v, w] of the vehicle.
In future work, velocity estimation may be based on mea-
surements from an external multi-camera configuration [3],
or onboard camera system [16].

3.2 Attitude estimation
The attitude is estimated based on accelerometer and gy-

roscope readings. Assuming body accelerations ax,y,z are
small in comparison to gravitational acceleration g, the ac-
celerometer readings can be used to estimate the body roll
and pitch angles:




Φac = arctan

(
ay
az

)

Θac = arcsin
(
ax
g

) . (3)

The gyroscope measures the velocities of the rotational
DOFs, which are transformed from the body reference frame
to a global reference frame according to:





Φ̇gy = p+ (q sinΦgy + r cosΦgy) tanΘgy

Θ̇gy = q cosΦgy − r sinΦgy
Ψ̇gy = (q sinΦgy + r cosΦgy) secΘgy

. (4)

[Φ,Θ,Ψ] respectively represent body roll, pitch, and yaw. Bi-
ases in the gyroscope measurements make its attitude estima-
tion sensitive to drift. Gyroscope readings are modeled with
additional Gaussian noise of variance 10−4 rad2/s2 and mean
value (i.e. bias) of 0.3 rad/s. To limit the effect of bias on the
gyroscope attitude estimation, the measurements are passed
through a High-Pass Filter (HPF). The HPF excludes the DC
biases from the gyroscope readings.

FWAVs are known to exhibit fast body pitching oscilla-
tions that occur at the stroke frequency [17, 10, 12]. These os-
cillations result in noisy accelerometer readings, that impede

pitch angle estimation. A Low-Pass Filter (LPF) removes the
effect of body pitching oscillations on the accelerometer read-
ings. The LPF cutoff frequency is set to 1 Hz.

Figure 5 shows the attitude estimation strategies that are
considered. The first strategy is a complementary filter, for
which the attitude estimation is a weighted sum of the esti-
mations based on the accelerometer and gyroscope readings.
By varying the weighting factor α between 0 and 1, the es-
timation relies more heavily on the gyroscope or on the ac-
celerometer. The complementary filter is considered because
of its simplicity, resulting in a low computational load.

Figure 5: Schematic representation of attitude estimation
methods: a) Complementary filter, b) Extended Kalman fil-
ter.

The second attitude estimation strategy uses an extended
Kalman filter (EKF). The EKF is similar to the complemen-
tary filter, as its attitude estimation is based on a weighted
average of the accelerometer and gyroscope readings. In
this setting, the EKF uses the accelerometer estimates (Equa-
tion 3) to update its integrated gyroscope predictions (Equa-
tion 4). The main difference between the EKF and com-
plementary filter, is that the EKF continuously updates the
weight it attributes to each sensor reading based on the per-
ceived process noise and measurement noise. Compared to
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the complementary filter, the EKF is expected to be more ro-
bust to measurement noise and uncertainty, at the cost of a
higher computational load.

Note that the attitude estimator only determines the esti-
mated roll and pitch angle. Since the accelerometer readings
are unaffected by the yaw angle, only the gyroscope readings
provide information on the yaw rate. This means that the yaw
rate measurement remains sensitive to sensing errors. There-
fore, the real yaw angle is used as input for the yaw controller
during the flight controller simulations. In future work, yaw
sensing may be improved by the addition of an onboard mag-
netometer or camera.

3.3 Attitude control
The attitude controller has a PID architecture. PID is a

popular control method in FWAV flight control [16, 10, 12]
because of its simplicity and low computational load, which
result in lower onboard memory requirements and allow for
high sampling rates. Roll, pitch and yaw are controlled sepa-
rately by three individual PID controllers, with the controller
outputs corresponding to the components of Equation 2:

dV (t) = KP1
eΦ(t) +KI1

∫
eΦ(t)dt+KD1

deΦ(t)

dt
, (5a)

V0(t) = KP2
eΘ(t) +KI2

∫
eΘ(t)dt+KD2

deΘ(t)

dt
, (5b)

ds(t) = KP3eΨ(t) +KI3

∫
eΨ(t)dt+KD3

deΨ(t)

dt
, (5c)

where KPi , KIi and KDi , with i = {1, 2, 3}, are the re-
spective PID gains. Moreover, the errors in the roll, pitch,
and yaw angles are represented as eΦ(t) = rΦ(t) − Φ(t),
eΘ(t) = rΘ(t)−Θ(t) and eΨ(t) = rΨ(t)−Ψ(t), respectively.
The reference signals rΦ, rΘ and rΨ are typically provided by
the outer-loop velocity controller (see Figure 4). Finally, note
that VI0 is not included in the attitude controller since it does
not affect the orientation of the vehicle.

3.4 Determination of PID parameters
This section focuses on the setting of the PID gains of

Equation 5. The gains are first obtained in an automated man-
ner inside the flight simulation environment. The PID param-
eters are subsequently used as initial values for the experi-
mental attitude controller, with further tuning being carried
out manually.

A constrained nonlinear optimization problem is formu-
lated to automate the tuning of the PID parameters. Specifi-
cally, the PID gains are iteratively adjusted based on a mean
squared error objective over time span Ts. The gain tun-
ing optimization problem is formulated around hover, i.e.,
rΦ(t) = rΘ(t) = rΨ(t) = 0, and is initialized with a roll
and yaw angle of Φ = Ψ = 5° that represent an initial dis-
turbance away from hovering conditions. The optimization
problem is formally defined as:

minimize
KPi ,KIi ,KDi

1

Ts

∫ Ts

0

(e2Φ(t) + e2Θ(t) + e2Ψ(t))dt

subject to

Eqs. 1, 2, 3, 4, 5 ∀t ∈ [0, Ts],

KPi ,KIi ,KDi > 0 i = {1, 2, 3}.

(6)

This formulation tunes all controller gains simultaneously,
and easily re-tunes the controller in case a design alteration
is made to the FWAV. The constraints in Equation 6 ensure
that the PID gains are positive, and that the combined con-
tribution of the PID outputs (according to Equation 2) does
not exceed the maximum motor voltage Vmax = 3.4 V. If
at any time during simulation motor voltages Vleft or Vright
would exceed Vmax, then voltage is made to saturate. At-
titude estimation is achieved through the EKF. The problem
is implemented in MATLAB using the built-in fmincon func-
tion with the interior-point algorithm. When the control sys-
tem is extended to include velocity control, the optimization
method in Equation 6 can be repeated to tune the velocity
controller gains. In this case, the error terms are replaced by
eu(t), ev(t), and ew(t).

Figure 6: Single cage gimbal setup.

Moment of
inertia (kgm2)

Drone Drone inside
gimbal

Ixx (roll) 14.7× 10−6 75.6× 10−6

Iyy (pitch) 13.6× 10−6 74.5× 10−6

Izz (yaw) 1.9× 10−6 2.1× 10−6

Table 2: Moments of inertia.

3.5 Experimental attitude controller setup
The real-life attitude controller tuning is done manually.

To simplify the tuning process, each orientation angle is tuned
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separately by rotating the drone only about one axis at a time.
For small corrections around hover, the three degrees of free-
dom in rotation can be considered to be uncoupled [9]. Roll,
pitch and yaw are therefore controlled through three sepa-
rately tuned PID controllers. The settings resulting from the
simulated PID controller are used as a starting point for the
physical controller tuning process.

Figure 6 shows the experimental attitude controller tun-
ing setup. The drone is mounted inside a single cage gimbal
with ball bearings. The inner rotation axis, the yaw axis, ex-
tends along the body vertical through the center of the drone.
The outer rotation axis corresponds to pitch or roll, depend-
ing on the direction in which the drone is mounted. The outer
rotation axis is positioned slightly below the drone center of
gravity. This means that the upright position is an unstable
equilibrium and the drone tends to flip over. Therefore, if
the drone manages to remain upright during operation, this is
only possible through a properly operating attitude controller.
By addition of a fixture over the yaw axis, the yaw angle can
be locked, thereby only leaving a pure rolling or pure pitching
motion. Similarly, the outer rotation axis can be locked, only
leaving yaw motion. The cage is a lightweight structure with
4mm carbon tubing. The cage material and dimensions are a
compromise between a lightweight construction to minimize
added inertia and a requirement of sufficient stiffness to avoid
bending of the cage.

Table 2 compares the inertia for the free drone and the
gimbal configuration. Compared to free flight the yaw mo-
tion is relatively unaffected, however there is a significant
increase in the moments of inertia linked to pitch and roll.
Rotational acceleration is lower when the drone is mounted
inside the gimbal, giving the attitude control more time to
respond to an error in orientation. Also, the increased mo-
ments of inertia imply that a larger counter torque is needed
to counteract a pitch or roll velocity, thus inducing a larger
control action. The gimbal structure is a test configuration
setup to evaluate the effectiveness of the attitude estimation
and control actions.

During the experiment, attitude estimation computations
are performed on the onboard processing unit. The attitude
estimation sampling rate is 200 Hz. State estimation data are
sent to a measurement laptop via Bluetooth for a posteriori
processing and analysis.

4 RESULTS

4.1 Attitude estimation strategies
The performance of the complementary filter and the EKF

is compared through an example flight simulation of 10 s,
with the drone released from a hovering condition. At t = 2 s
the vehicle experiences a positive rolling torque disturbance,
and at t = 6 s the vehicle experiences a positive pitching
torque disturbance. Figure 7 shows the actual body roll and
pitch angles, as well as the estimated values and estimation
errors from the EKF and different complementary filter set-

tings. The fast body pitching oscillations are clearly visible
and have an amplitude of approximately 2.5°.

Figure 7: Comparison of roll (Φ) and pitch (Θ) estimation
strategies.

• At very low values of α (α = 0.002), the complementary
filter relies heavily on the gyroscope readings for its attitude
estimation. The estimator shows a good correlation at times
when the system is perturbed. However, when the system
is at rest, a bias term is present in the attitude estimation.

• When α increases, the complementary filter relies more on
the accelerometer readings. This removes the bias on the at-
titude estimation when the system is at a steady state. How-
ever, the attitude estimator becomes less responsive to fast
changes in orientation. For α in the range from 0.1 to 1, the
attitude estimator behavior is approximately identical.

• There is a significant difference in attitude estimation per-
formance between α = 0.002 and α = 0.01. An inter-
mediate value for α may lead to an attitude estimator that
provides a better compromise between accurate attitude es-
timation during system perturbation and a low bias when
the system is at rest.

• The behavior of the EKF is similar to that of the low α com-
plementary filter. When the system is in a steady state, a
bias is present in the attitude estimation that is only slightly
lower than that of the low α complementary filter. When
the system is perturbed, the EKF has a faster response than
the high α value complementary filter. For the pitching
motion, with the accelerometer readings affected by body
pitching oscillations, the EKF behavior is very similar to
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the α = 0.002 complementary filter. For roll estimation,
the EKF appears to rely more heavily on accelerometer
readings than the α = 0.002 complementary filter, result-
ing in a more damped response to a roll perturbation.

The EKF is selected for further integration into the simu-
lated and physical flight controller schemes. The EKF shows
an increased responsiveness to pitching perturbations com-
pared to high α complementary filters. Also, the EKF is ex-
pected to be more robust to general process noise and sensor
noise. The bias that is present with the EKF is expected to be
remedied when the attitude controller is preceded by a veloc-
ity controller.

4.2 Attitude and velocity control simulation results
The combination of velocity control and attitude control

is initially tested without position control. Figure 8 shows
two consecutive controlled flight maneuvers. The vehicle is
released in hover, with a small initial roll perturbation. After
t = 5 s, the vehicle is commanded to accelerate at a constant
rate to a forward flight velocity of u = 0.5 m/s, measured in
the body coordinate system, and then maintain this forward
flight velocity until t = 10 s, after which it should decelerate
back to hover. The other body velocity components need to
remain at v = w = 0 m/s. At t = 15 s, the vehicle is
commanded to accelerate at a constant rate to a lateral flight
velocity of v = 0.5 m/s, and then maintain this velocity until
the end of the simulation.

The vehicle successfully stabilizes to follow the reference
velocity signal. The outer-loop velocity controller initiates
the forward flight maneuver by altering the pitch angle refer-
ence input in order to tilt the thrust vector forward. Similarly,
the lateral flight maneuver is initiated by adjusting the roll an-
gle reference. The lateral velocity combined with a non-zero
body pitch angle, results in a yawing torque. During initia-
tion of the lateral flight maneuver, the yaw angle increases to
a maximum deviation of 18°, after which the yaw controller
manages to return the yaw angle to its reference value. The
velocity controller accommodates for the bias in the pitch and
roll estimation angles by properly adjusting the reference sig-
nals that are sent to the roll and pitch controllers.

4.3 Experimental validation
Figure 9 shows the results for the experimental roll and

pitch control respectively. Each time the drone is commanded
to initially maintain an upright orientation for 5 seconds.
Next, the drone should tilt its attitude by 20° and maintain
the new position. Figure 9 only shows the estimated roll and
pitch values for this maneuver. The controller settles at a
steady state error of approximately 4° for the estimated roll
angle, and 6° for the estimated pitch angle. The steady-state
errors in the experimental data may be explained by the lower
integral gains and higher derivative gains on the physical sys-
tem compared to the simulation (cfr. Table 3). The lower
integral gains and higher derivative gains prevent large oscil-

Figure 8: Velocity control during simulation flight maneuver-
ing.

lations of the system, but at the cost of a longer settling time.
The attitude controller experiment is repeated also for a step
input, and for a ramp input tilt where the drone subsequently
needs to return to an upright orientation. Figures related to
the other experimental attitude control cases are available in
Appendix A. These figures show that the controller is able
to maintain hover, stabilize a severe step input, return from a
tilted state to upright, and perform a yawing motion in either
direction. Video footage of the attitude control experiments
for roll, pitch, and yaw is available in the supplementary ma-
terial.

4.4 Study limitations

Flight simulation in this study assumes a system with
known, time-independent flight characteristics that can be
represented through rigid wing aerodynamics. In practice,
the extent to which assumptions such as rigid wings affect
model accuracy remains uncertain. Also, the dynamic char-
acteristics of the FWAV may change due to design alterations
or due to damage after a collision. The IMU readings may
be influenced by additional sources of inaccuracies such as a
variable bias, temperature fluctuations, or vibration rectifica-
tion, increasing the measurement noise. Finally, motor heat-
ing is known to affect the system response to control actions,
leading to time-varying dynamic characteristics. Future stud-
ies should consider uncertainties in the system dynamics, as
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Figure 9: Attitude controller measurements for ramped in-
puts: a) roll estimation, b) pitch estimation.

well as their time-varying nature, for the implementation of a
robust flight control strategy.

Simulation Experimental
KP KI KD KP KI KD

Roll (Φ) 0.782 3.089 0.051 0.9 0.2 0.3
Pitch (Θ) 1.45 7.81 0.06 1.5 0.2 0.7
Yaw (Ψ) 0.02 0.045 0.003

Yaw rate (Ψ̇) 0.2 0.3 0.0
Unit V

rad
V

rad·s
V

rad/s
V

rad
V

rad·s
V

rad/s
V

rad/s
V

rad
V

rad/s2

Table 3: Control gains in free flight simulation and for exper-
imental gimbal setup

5 CONCLUSION AND FUTURE WORK

This work discusses a control system for an insect-like
tailless flapping wing drone. A simulation environment based
on a quasi-steady aerodynamics model is used to compare at-
titude estimation techniques that employ onboard IMU read-
ings. The attitude estimation is incorporated into a cascaded
PID flight controller that stabilizes the drone attitude and ve-
locity around hover. The outer-loop velocity controller suc-
cessfully compensates for biases present in the attitude esti-
mator. The attitude estimation and attitude control are eval-
uated experimentally with the drone mounted inside a single
cage gimbal setup. The drone produces sufficient torque to
stabilize its orientation around a desired tilt attitude. Because
the gimbal setup significantly increases inertia, the controller
gains and response time need to be reconfigured for free flight
testing.

The relatively simple PID architecture is expected to suf-
fice for unobstructed hovering flight when the flight system
characteristics are static and accurately represented by the

system model. In practice FWAVs experience conditions that
may be challenging for a PID flight controller. The large
range of flight modes and the uncertain, time-varying sys-
tem characteristics encountered by physical FWAVs are ex-
pected to pose important additional challenges to the flight
controller. Therefore, the flight simulation environment de-
veloped in this work will serve as a basis for future investiga-
tions that evaluate more advanced robust and adaptive control
methods.

The controller is expected to derive advantage from addi-
tional sensing equipment to improve its state estimation capa-
bilities. An onboard magnetometer would allow to determine
the yaw angle, and camera readings would enable velocity
and position control.
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[8] M. Karásek and A. Preumont. Flapping flight stability
in hover: A comparison of various aerodynamic models.
International Journal of Micro Air Vehicles, 4:203–226,
2012.

[9] K. Nguyen, L. T. K. Au, H. V. Phan, and H. C. Park.
Comparative dynamic flight stability of insect-inspired
flapping-wing micro air vehicles in hover: Longitudinal
and lateral motions. Aerospace Science and Technology,
119(107085), 2021.

[10] H. V. Phan, S. Aurecianus, T. Kang, and H. C. Park.
Kubeetle-s: An insect-like, tailless, hover-capable robot
that can fly with a low-torque control mechanism. Inter-
national Journal of Micro Air Vehicles, 11:1–10, 2019.

[11] T. Roelandt, T. Willems, F. Naets, and D. Vandepitte.
High-speed camera measurement of insect-like flapping
wing deformation using a speckle pattern wing mem-
brane. In 14th International Micro Air Vehicle Confer-
ence and Competition (IMAV2023), 2023.

[12] Z. Tu, F. Fei, J. Zhang, and X. Y. Deng. An at-scale
tailless flapping-wing hummingbird robot. i. design, op-
timization, and experimental validation. IEEE Transac-
tions on Robotics, 36(5):1511–1525, 2020.

[13] Q. Wang, J.F.L. Goosen, and F. van Keulen. A predictive
quasi-steady model of aerodynamic loads on flapping
wings. Journal of Fluid Mechanics, 800:688–719, 2016.

[14] T. Roelandt and D. Vandepitte. Inherently stable de-
scending flight of a tailless flapping wing micro air ve-
hicle by upward wing elevation. International Journal
of Micro Air Vehciles, 2023.

[15] S. Timmermans, F. Leys, and D. Vandepitte. Model-
based evaluation of control roll, pitch, yaw moments for
a robotic hummingbird. Journal of Guidance, Control
and Dynamics, 40(11):2934–2940, 2017.
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APPENDIX A: ADDITIONAL EXPERIMENTAL
ATTITUDE CONTROL CASES

Figure 10: Attitude controller measurements for maintained
hover.

Figure 11: Attitude controller measurements for step inputs:
a) roll estimation, b) pitch estimation.
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Figure 12: Attitude controller measurements for ramp inputs
to 20° and back to upright: a) roll estimation, b) pitch estima-
tion.

Figure 13: Attitude controller measurements for yaw rate step
inputs.
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