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ABSTRACT

We present a methodology for landing zone de-
tection in Micro Aerial Vehicles (MAVs) using
Vision Transformers (ViTs). We present results
on the use of ViTs due to their ability to cap-
ture spatial relations through the attention mech-
anism, potentially offering superior performance
with fewer training examples than other Deep
Neural Networks. Experiments with aerial im-
ages, from a dataset and depth images captured
with a depth camera on board a drone, confirm
ViT’s superiority over other widely used Con-
volutional Network such as ResNet, particularly
with limited training data. Despite the noisy
depth images, captured with the depth camera,
the ViT model can be used to detect landing
zones with an average processing time of 11.9
ms on outdated GPU hardware.

1 INTRODUCTION

Vision Transformers (ViTs) represent a significant ad-
vancement in computer vision, leveraging the transformer ar-
chitecture traditionally used in natural language processing.
ViTs have demonstrated superior performance on various im-
age classification benchmarks, often surpassing convolutional
neural networks (CNNs). They handle larger datasets and
more complex tasks efficiently, benefiting from the ability to
learn long-range dependencies within the data. Furthermore,
ViTs have been shown to learn faster with fewer examples
than CNNs [1], making them suitable for tasks that require
rapid prediction models. This advantage is particularly use-
ful in scenarios, where there is limited time to collect train-
ing data and where short training times are desirable. Due
to these properties, in this work, we explore the use of ViTs
for landing zone detection using depth images captured with
a camera on board a Micro Aerial Vehicle (MAV) that could
be navigating an environment, seeking a suitable place to per-
form its landing.

Due to the advancements in hardware and software, today
it is possible for MAVs to carry small depth cameras such
as the Real-Sense or the OAK-D camera [2, 3], which pro-
vide chromatic and depth images from the scene. When depth
cameras are not available, a possibility is to infer depth from
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Figure 1: We leverage the attention mechanism of a Vi-
sion Transformer model to predict whether a landing zone
is present in a depth image. We used the OAK-D camera on-
board a MAV to obtain depth images. It is noteworthy that the
chromatic image to the right barely reveals the presence of an
object in the middle, which could mislead a detector based on
chromatic information. In contrast, the object is more clearly
visible in the depth image.

chromatic images using Deep Learning [4, 5]. In both cases,
we can remove the dependency on more expensive range sen-
sors such as LiDAR or radar, which usually are bulky and
expensive. Moreover, in the work of [6], it was shown that
a CNN could be trained to detect more effectively landing
zones using depth images as input to the network, rather than
when using chromatic (RGB) images.

Motivated by the above, in this work, we explore the use
of ViTs and compare it against using a state-of-the-art Resid-
ual Neural Network (ResNet) [7]. Our goal has been to in-
vestigate the performance of ViTs when learning to associate
depth information to landing zones, whose depth maps are
expected to show regular patterns in the depth values as a re-
sult of the uniformity of the terrain, which makes it good for
a landing zone.
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We conducted our experiments using the dataset ESPADA
[5], which provides pairs of RGB and depth aerial images.
We also evaluated our approach using real images captured
with a drone. Our results indicate that ViTs outperform
ResNet requiring even less training data, making them a ro-
bust and effective approach to address the landing zone detec-
tion problem. Similarly, we also carried out experiments us-
ing depth images captured with the OAK-D camera onboard
a MAV while flying indoors (see Fig. 1, confirming that the
ViTs, when trained with a small dataset, outperforms ResNet
in accuracy and slightly in operation frequency.

In order to present our approach, this paper has been or-
ganised as follows: the related work is presented in Section 2;
our methodology is described in Section 3; the experimental
framework is presented in Section 4 and finally, our conclu-
sion are drawn in Section 5.

2 RELATED WORK

The increasing use of autonomous MAVs has created a
need for safe landing zone (SLZ) detection techniques[8, 9],
particularly in scenarios where MAVs experience technical
difficulties, such as low battery, adverse weather conditions,
mechanical failures, and interference. In these situations, the
MAVs have an urgent need to land safely. The issues sur-
rounding MAV landing has attracted wide attention, thus re-
sulting in the development of two main detection techniques:
non-vision-based [10, 11, 12] and vision-based[13, 14, 6].

Vision-based techniques offer distinct advantages, includ-
ing strong autonomy, cost-effectiveness, and robust anti-
interference capabilities. These techniques encompass vari-
ous approaches: (1) Camera-based techniques, which utilise
different configurations of cameras, such as monocular,
stereo ranging, or multi-camera setups.[15, 16] (2) Structure
from Motion (SfM) involves processing a sequence of 2D im-
ages to create a 3D terrain surface, enabling the estimation
of orientation, photo location, and camera parameters such
as focal length, radial, and tangential distortion. (3) Colour
segmentation is based on grayscale thresholding to identify
relevant features. (4) Simultaneous Localisation and Map-
ping (SLAM) estimates MAV localisation by generating a 3D
map of the environment and using it to guide the landing [17].
Currently, due to the demonstrated capabilities of deep learn-
ing, camera-based techniques can be integrated into computer
vision classification algorithms for detecting landing zones in
MAV applications.

Deep convolutional neural networks (DCNNs) have led
to significant breakthroughs in image classification. [18, 19]
DCNNs naturally integrate low, mid, and high-level features
and classifiers and can extract different features due to the
number of stacked layers [20]. To date, researchers have
proposed several CNN architecture models, including VGG,
LeNet, GoogleLeNet, and AlexNET. We selected ResNet-50
for CNN image classification due to its advantages in ad-
dressing network degradation, and compared to GoogLeNet

Figure 2: ResNet-50 model architecture. Image taken from
[23]

and VGG, ResNet offers greater computational efficiency and
lower time complexity [21].

ResNet [7] emerged from inquiring whether stacking
more layers would enable the model to learn more effectively.
To address the problem of vanishing/exploding gradients, the
ResNet model introduced Residual Blocks. Using skip con-
nections, the model connects activations from one layer to
subsequent layers, forming residual blocks. These blocks are
then stacked together, resulting in a powerful image classifi-
cation model that can be trained on large datasets and achieve
state-of-the-art results.

On the other hand, the Transformer model has emerged
as a deep neural network initially applied in natural language
processing (NLP) tasks, primarily based on the self-attention
mechanism. Due to the Transformer’s success in NLP, there
has been increasing interest in applying it to computer vision
tasks such as classification. This led to developing the Vi-
sion Transformer model (ViT) [22]. Recent studies, such as
[22, 1], have demonstrated that ViT achieves excellent results
compared to state-of-the-art convolutional networks while re-
quiring substantially fewer computational resources for train-
ing.

3 METHODOLOGY

Due to the State-Of-The-Art (SOTA) performance of pre-
trained ViT models compared to CNN models in image clas-
sification tasks, we aim to take advantage of the Vision Trans-
formers’ attention-based mechanism over small datasets and
noisy depth images for safe landing zone detection. There-
fore, in this section, we describe the architecture of the
ResNet and ViT models and the dataset we used to fine-tune
both models.

3.1 Deep Residual Network (ResNet)

We implemented the ResNet-50 model pre-trained on
ImageNet1KV 2, see Fig. 2. The ResNet-50 architecture
consists of the following main components: Input Layer:
This layer receives an image of size 224x224x3. It includes
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Figure 3: ViT architecture. Taken from [22]

a 7x7 convolutional layer with a stride of 2, followed by
batch normalisation and a ReLU activation function. This
layer extracts basic features from the input image and is
followed by a 3x3 max-pooling layer, also with a stride
of 2, which downsamples the output. Residual Blocks:
Include bottleneck blocks, each with three convolutional
layers (1x1, 3x3, 1x1). The 1x1 convolutions reduce and
restore the dimensions, while the 3x3 convolution processes
the spatial features. Each convolutional layer is followed by
batch normalisation and a ReLU activation function. Short-
cut connections add the input of the block directly to the
output, allowing the network to learn residual functions and
mitigating the vanishing gradient problem. Fully Connected
Layer: This layer maps the output to the desired number of
classes using a softmax activation function.

3.2 Vision Transformer
The Vision Transfomer (ViT) model takes the height and

width dimensions of the input image as parameters (H and
W, respectively) and works with a specified number of chan-
nels (C). The ViT transformer divides the input image into
N patches with a resolution of (P, P), where the number of
patches is defined as:

N = HW/P 2 (1)

This N value serves as the effective input sequence length
for the Transformer. The ViT model maintains a constant la-
tent vector size D, where patches are flattened and mapped
to D dimensions. Each image patch is tokenized and pro-
cessed by a Transformer encoder, which represents the image.
The attention head is implemented by a multi-layer percep-
tron (MLP) with one hidden layer. Position embeddings are
added to the patch images to retain positional information.
The transformer encoder consists of alternating multi-head
attention layers and MLP blocks, see Fig. 3.

3.3 Extended Synthetic and Photogrammetric Aerial-Image
Dataset (ESPADA)

We used the ESPADA dataset [5] to train ResNet and ViT
classification models. ESPADA is an aerial image dataset to

Figure 4: Bebop Parrot 2 with drone equipment specifica-
tions.

train deep neural networks for depth image estimation from a
single aerial image.

ESPADA contains image pairs comprising chromatic im-
ages and their corresponding depth images, created from syn-
thetic scenes and photogrammetric models imported into the
AirSim simulator [24]. The camera view is top-down, and the
image resolution for both RGB and Depth images is 640x480
pixels, with a field of view of 80◦. Image overlap ranges be-
tween 80 and 90 per cent, depending on the drone’s height.
The dataset includes 80,000 RGB-D image pairs across 49
scenes: 35 from photogrammetric models and 14 from syn-
thetic scenes, divided into five categories: urban, neighbour-
hood, rural, agriculture, and field. ESPADA is pre-split into
training and evaluation datasets. Additionally, it contains
three aerial video sequences captured with a drone flying over
real scenes, acquired from heights ranging from 30 to 120 me-
tres. For our purposes, we used solely images generated with
photogrammetric models as it is argued by the authors that
these images provide a more photorealistic and closer resem-
blance to real aerial images [5].

3.4 Oak-D dataset
Based on [25] framework, we used the Parrot Bebop

2 drone equipped with an Oak-D sensor, as the drone’s
camera is monocular, and an Intel Compute Stick as the host,
depicted in Fig. 4. Additionally, the Bebop drone cannot
capture top-down views as required due to the absence of
a gimbal. To address this limitation, we positioned the
Oak-D sensor at the front of the vehicle, facing downwards,
to capture top-down views. We reduced the weight of the
Oak-D sensor by replacing the camera case with a 3D-printed
piece to avoid instabilities due to the Oak-D camera position,
as it was done as well in [25].

The depth camera has a minimum range of 0.40 metres
and a maximum range of approximately 8 metres. The Oak-
D dataset contains 750 paired depth and monocular images
at a resolution of 640x480 pixels collected from four flight
sequences captured at heights between 0.50 metres and 2 me-
tres. These sequences are divided into four categories: Desk,
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Figure 5: Examples of aerial images and their corresponding estimated depth used for training. Note that planar surfaces exhibit
a similar red tone, ideal for landing. In the depth images, the farther the depth for the camera, the lighter the red colour.

Box, Office, and Hall. The first two datasets consist of se-
quences flying over obstacles corresponding to their names,
with 131 and 55 images, respectively. The last two datasets
comprise sequences recorded in an Office (369 images) and a
Hall (195 images).

4 EXPERIMENTAL FRAMEWORK

In this section, we describe the evaluation results using
two different datasets: ESPADA and our small depth image
dataset captured with an Oak-D sensor mounted on the drone
as described in Section 3.

For each dataset, we conducted two evaluations: one with
fewer images and another with a larger number. No data aug-
mentation techniques were applied. This approach was taken
to assess the impact of training the neural models with lim-
ited data, and with noisy data in the case of the images cap-

tured with the OAK-D sensor. This is particularly relevant in
scenarios where there is insufficient time to collect extensive
data, yet it is essential to train a model that can effectively
perform tasks such as landing zone detection, even with the
limited data available.

For the two experiments conducted with the ESPADA
dataset, we selected sets of 200 and 400 depth images evenly
split between landing and no-landing zones. Examples of
these images are shown in Fig. 5. The model was trained
using an 80-20% split for training and testing, respectively;
we show two accuracy columns in all the tables: ’Training
accuracy’ was calculated immediately using a 20% split of
the images for evaluating, while the other accuracy column,
’Test accuracy’, was obtained by comparing the model’s pre-
dictions against 150 unseen labelled images. It is important to
note that these 150 unseen images were selected from the ES-
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PADA dataset, specifically from the validation image subsets
from the five categories in ESPADA, all captured at a height
of 30 metres.

Furthermore, we conducted two additional experiments.
This time, the ResNet and ViT models were trained with two
small datasets taken from the Oak-D dataset, with 84 and 284
images. Examples of these images are shown in Fig. 6. As
before, we selected 80% for training and 20% for testing. We
evaluated the model against 120 unseen labelled images for
’Test accuracy’. It’s noteworthy that the images from the
Oak-D camera were noisier compared to those from the ES-
PADA dataset.

Experiments conducted with the ESPADA dataset, sum-
marised in Table. 1 and 2, reveal the following observations.
For the ResNet model, due to the limited information in the
200-image dataset, the model achieves its highest accuracy
within the first 20 epochs. However, as the number of epochs
increases, accuracy decreases, likely because the model
falls into a local minimum. This behaviour was consistently
observed in most of the training runs for the ResNet model.
On the other hand, the ViT model, with the same 200-image
dataset, reaches higher accuracy in 20 epochs and still
increases its accuracy.

Experiments conducted with the 400-image dataset
showed better performance for the ResNet model compared
to the when using a smaller dataset, as ResNet struggles with
limited information. However, the ViT model still achieved
superior results when evaluated using real images.

To evaluate the performance of both models in environ-
ments different from those represented in ESPADA, we cap-
tured a dataset in an indoor scenario using the OAK-D camera
onboard a MAV, as described in Section 3. In Table 3, the first
row shows the results of training the ResNet model with the
Oak-D small dataset of 84 images and its corresponding accu-
racy. We conducted this training multiple times and selected
the model with the best training accuracy at 50 epochs. This
selection was made because increasing the number of epochs
led to a decrease in accuracy or caused the accuracy to oscil-
late. For the second row, with more images for training, we
can observe the ResNet model performance is better.

Similar to the ResNet experiment, in Table 4, the first row
shows the results of training the ViT model with the Oak-D
small dataset of 84 images and its corresponding accuracy.
Both training and test accuracies are reported at 50 epochs.
The ViT model demonstrates faster convergence during train-
ing and performs better than the ResNet model trained with
the same small number of examples. The ViT model can
reach 80% accuracy within just 15 to 20 epochs.

Finally, in terms of processing time, the ResNet model
runs at 8.3 ms, while the ViT model runs at 11.9 ms on av-
erage, both on outdated GPU hardware (GeForce GTX 1070)
using CUDA 12.2. This is encouraging for future work, as
we aim to run these models on low-budget processors. We

note that, due to library issues and time constraints, we were
unable to import the models to run on the OAK-D camera,
which has a GPU. However, we plan to pursue this effort to
fully utilise the sensor’s capabilities.

ResNet Trained on ESPADA

Images Epochs Training Acc Test Acc(%)

200

20 51.28 57.27
30 53.85 32.7
40 62.12 30.5
50 70.9 30

400

20 68.18 67.27
30 70.9 70.0
40 84.62 84.54
50 87.18 86.9

Table 1: Accuracy of the fine-tuned ResNet-50 model trained
with ESPADA. Note that the model requires more images and
more epochs to achieve more accuracy, highlighted in bold. A
total of 100 images were used as test set.

ViT Trained on ESPADA

Images Epochs Training Acc Test Acc(%)

200

20 86.67 81.9
30 85.85 83.63
40 89.12 86.09
50 91.9 87.0

400

20 80.9 79.8
30 86.36.0 82.36
40 96 .36 90.9
50 96.45 91.3

Table 2: Accuracy of the ViT model trained with ESPADA.
Note that the model achieves superior results with fewer im-
ages compared to ResNet, and the best results when using
more images for training, highlighted in bold.

ResNet Trained on captured dataset

Images Epochs Training Acc Test Acc(%)

84 50 70.9 62.4
284 50 94.9 96.6

Table 3: Accuracy for the ResNet model trained with images
captured with the OAK-D camera onboard the MAV.

5 CONCLUSION

We have presented a methodology to address the prob-
lem of landing zone detection for MAVs. To achieve this, we
have explored the use of two popular Deep Neural Networks,
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Figure 6: Examples of aerial images taken from our dataset and their corresponding estimated depth used for training. Note
that planar surfaces, ideal for landing, exhibit a similar red tone, and Oak-D images are noisier than ESPADA dataset. In the
depth images, the farther the depth for the camera, the lighter the red colour. Taken from [5]

ViT Trained on captured dataset

Images Epochs Training Acc Test Acc(%)

84 50 82.7 73.63
284 50 98.2 96.36

Table 4: Accuracy of the ViT model trained with images cap-
tured by the OAK-D camera onboard the MAV. Note that this
model achieved better results than ResNet with fewer images.

namely Residual Networks and Vision Transformers. The
former is a Convolutional Neural Network that has proven
highly successful in various computer vision tasks. However,

the latter offers an architecture capable of capturing spatial re-
lations among visual data, thanks to its attention mechanism.
Therefore, for computer vision tasks, it may offer superior
performance when trained with fewer examples.

These findings were confirmed in our experiments, where
we trained both models using aerial images from a state-of-
the-art dataset known as ESPADA and images captured with
the OAK-D sensor, a depth camera mounted on a MAV. We
opted to use depth images in both cases, as the literature
suggests that depth images provide richer data in the form
of depth values, aiding in determining whether the observed
scene corresponds to a landing zone [6].

Although CNNs have a strong track record in vari-
ous computer vision tasks and are efficient with large-scale
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datasets, we have also explored the use of both models trained
from scratch and pre-trained models. The choice to employ
Vision Transformers (ViTs) and to conduct a more in-depth
analysis is grounded in previous studies that contrast ViTs
and CNNs [26, 27, 28]. Based on these works and our ex-
periments, our results indicate that pre-trained Vision Trans-
formers excel in scenarios where understanding global depen-
dencies and context is crucial. Vision Transformers typically
require larger amounts of training data to achieve compara-
ble performance to CNNs. Our findings reinforce that the
ViT model surpasses the ResNet model, particularly when
pre-trained, resulting in better accuracy when fine-tuned with
fewer images. It is also noteworthy that the depth images
from the OAK-D camera were less accurate than those from
other depth cameras, such as Intel’s RealSense. Yet, the ViT
model effectively managed the noisy data. Moreover, with an
average prediction time of 11.9ms on an outdated GPU, the
ViT model shows potential for real-time detection when im-
plemented on state-of-the-art processors aboard the vehicle.

Future work will involve testing depth images generated
by a Deep Neural Network from a single image, as outlined
in [29]. Additionally, we will explore distillation strategies
for the ViT to enhance prediction speed on embedded hard-
ware. Furthermore, we will investigate Explainable Artificial
Intelligence methods to provide a more in-depth analysis of
feature extraction characteristics in both ViT and CNN mod-
els.
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