
ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Adaptive Neural Network Quadrotor Trajectory
Tracking Controller Tolerant to Propeller Damage

Mauro Villanueva Aguado*, Christophe De Wagter†, and Guido de Croon‡

Micro Air Vehicle Lab, Faculty of Aerospace Engineering,
Delft University of Technology, 2629 HS Delft, The Netherlands

ABSTRACT

Accurate trajectory tracking with quadrotors is a
challenging task that requires a trade-off between
accuracy and complexity to run onboard. State-
of-the-art adaptive controllers achieve impres-
sive trajectory tracking results with slight per-
formance degradation in varying winds or pay-
loads but at the cost of computational complex-
ity. This work proposes a lightweight combi-
nation of adaptive and neural control and shows
its performance when flying with propeller dam-
age. The neural architecture consists of offline
learning of a condition-invariant representation
of the aerodynamic forces through Deep Neu-
ral Networks. The second part consists of fast
online adaptation using a composite adaptation
law. We deploy this flight controller fully on-
board the flight controller of the Parrot Bebop
1, showcasing its computational efficiency. The
adaptive neural controller improves tracking per-
formance by ≈ 60% over the nonlinear base-
line, with minimal performance degradation of
just ≈ 20% with increasing propeller damage.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) offer unmatched ver-
satility & agility, with the potential to revolutionize a wide
range of industries including cinematography, defense, agri-
culture, and logistics. Crucially UAVs require a trained op-
erator to fly, increasing operational costs, and hindering the
wider commoditization of UAVs. Autonomous UAVs take
away the need for a trained operator. Autonomous UAVs
have already been deployed in niche applications, from mak-
ing history by executing the first controlled flight on another
planet [1] to delivering crucial medical supplies to isolated
hospitals in Africa [2].

One of these challenges is tracking trajectories accurately
and thus safely in a wide range of conditions, which relies
on aerodynamics modeling of the quadrotor. But these aero-
dynamic effects are difficult to model, ”they consist of the
propeller lift and drag which are dependent on the induced

*Email address: contact@maurovillanueva.eu
†Email address: c.dewagter@tudelft.nl
‡Email address: g.c.h.e.decroon@tudelft.nl

air stream velocity, fuselage drag, downwash and turbulent
interactions between propellers and fuselage” [3]. This prob-
lem is further compounded in the case that the propellers are
damaged which significantly changes the aerodynamic model
of the quadrotor.

Conventional approaches to trajectory tracking use simple
linear or quadratic [4] drag models to capture these aerody-
namic effects. While simple yet effective at low speeds the
accuracy of these models quickly degrades at higher speeds
and cannot account for changes in the aerodynamic model.
While high-fidelity aerodynamic models have been derived
from Computational Fluid Dynamic (CFD) simulations [5],
these simulations require platform-specific meshing of hun-
dreds of millions of grid points and multiple days in large
compute clusters to solve and are ultimately condensed into
simplified models to be tractable onboard. Advances in Neu-
ral Networks (NN) and small powerful GPUs have enabled
promising results at approximating these aerodynamic effects
[6, 7, 8] while remaining computationally tractable to run on-
board a quadrotor. NN provide a higher accuracy than the
simple drag models. However, implementing NN in a drone
controller while addressing the unpredictable nature of their
output remains a largely unexplored challenge. A trade-off
between model accuracy & complexity must be considered.

This paper is structured as follows. An overview of re-
lated work on quadrotor trajectory tracking control, adaptive
control and adaptive neural control is presented in section 2.
In section 3 a detailed methodology of the quadrotor model,
adaptive neural controller and trajectory generation is pro-
vided. The experimental setup is explained in section 4. The
main results are shown in section 5, including neural network
training & validation loss, unmodeled force predictions, con-
troller tracking performance comparison and trajectory plots.
This is followed by discussing the results and providing rec-
ommendations in section 6. Lastly, the main conclusions of
the adaptive neural controller are raised in section 7.

2 RELATED WORK

2.1 Quadrotor Trajectory Tracking Control
Quadrotors are inherently nonlinear and unstable plat-

forms. Early work on quadrotor control achieved stable hover
and near-hover flight using well-established control schemes
such as Proportional-Integral-Derivative (PID) [9] or Linear-
Quadratic Regulator (LQR) [10]. These controllers rely on
the small-angle assumption to linearize the dynamics of the

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 87

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

system, thus they are most effective at low speeds. Despite
this drawback cascaded PID control is the most common con-
troller architecture in off-the-shelf flight controllers due to its
simplicity, ease-of-tuning and sufficiently good performance.

As quadrotors have become more powerful and
lightweight, capable of executing aggressive trajecto-
ries, nonlinear flight controllers have been proposed to cope
with the non-linearities in the attitude dynamics. Nonlinear
flight controllers such as Nonlinear Dynamic Inversion
(NDI) [11] transform the nonlinear dynamics into a linear
input-output map enabling the use of a linear control law.
However, exact dynamic inversion suffers from a lack of
robustness as it quite sensitive to sensor noise as well as mod-
eling uncertainty [12]. Variants of NDI have been proposed
to solve this problem, such as backstepping design [13]
which recursively designs a controller, starting from a known
stable inner system and progressively backs-out stabilizing
the entire nonlinear system. A more recent variant known
as incremental nonlinear dynamic inversion (INDI) [14] has
been developed, which improves robustness by gradually
applying control inputs based on inertial measurements.

State-of-the-art trajectory tracking algorithms can be cat-
egorized into predictive or non-predictive methods. Non-
predictive methods track a single reference step while pre-
dictive methods encode several future timesteps into the con-
trol command. Differential-Flatness-Based Control (DFBC),
a non-predictive method, takes advantage of the fact that
quadrotors are differentially flat systems [15] allowing for the
reformulation of the trajectory tracking problem into a state
tracking problem. DFBCs are combined with an outer loop
INDI controller and aerodynamic model to achieve an im-
pressive tracking performance at high-speeds [16, 17], with
a Position Root-Mean-Squared Error (RMSE) of as little as
12.2 cm with a top speed of 20 m/s [17]. However, [17] re-
lies on optical encoders for direct motor speed feedback or
in the case [16], is limited to x-y plane trajectories and uses
a very high-frequency attitude controller running at 4 kHz.
Most importantly, DFBC relies on the quadrotor model to
generate the reference states and thus is susceptible to model-
ing mismatch, reducing the thrust coefficient by 30% will lead
to significant performance degradation or even crashing, with
position RMSE degrading from 8.5 cm to 100.4 cm [18].

Nonlinear Model Predictive Control (NMPC) is the most
prevalent predictive method. NMPCs generate motor com-
mands in a receding horizon fashion, solving the constrained
nonlinear optimization problem over the predicted time hori-
zon and minimizing tracking error. Similarly, the perfor-
mance of NMPCs is further improved by adding an outer
loop INDI controller and aerodynamic model. NMPCs can
minimize the tracking error across multiple future time-steps
whereas DFBCs are too short-sighted only considering one
reference point. This allows NMPCs to outperform DFBCs
at tracking trajectories at high speeds, especially for dynami-
cally infeasible trajectories. NMPCs achieve a state-of-the-art

position RMSE of 10.2 cmwith a maximum speed of 20m/s
[18]. However, solving this nonlinear optimization problem
over several future time steps requires significant computa-
tional resources, in the order of 100 times greater than DFBC.
Despite advances in powerful embedded computers and non-
linear solvers deploying NMPC onboard is still a challenge,
requiring an NVIDIA Jetson TX2 to run the algorithm on-
board at 100 Hz in [18] adding significant weight and power
consumption.

2.2 Adaptive Control
Adaptive control of systems with parametric uncertainty

has been extensively researched. Adaptive controllers are of-
ten an augmentation to existing controllers rather than a stan-
dalone controller. In the field of UAVs adaptive controllers
can be categorized into Model Identification Adaptive Con-
trollers (MIACs) or Model Reference Adaptive Controllers
(MRACs). MRACs use an adaptive controller, typically an
L1 adaptive controller, to drive the system towards a desired
reference model behavior. MRACs have been successfully
deployed in quadrotors, demonstrating slight trajectory track-
ing degradation with unmodeled weights attached [19, 20] or
loss-of-thrust [21]. Albeit, these results are achieved track-
ing simple circular trajectories not exceeding 2 m/s with a
ground station in-the-loop [19], require powerful embedded
computers [20] or have overall poor tracking performance
[21].

MIACs perform System Identification (SI) online to es-
timate the values of unknown linear coefficients which are
then mixed with known basis functions. The selection of ba-
sis functions may be challenging, but they should reflect im-
portant features of the underlying dynamics. Physics-based
modeling is typically used to design these basis functions
[22], however, this requires extensive knowledge of the sys-
tem and suffers from convergence problems when there is a
lack of excitation. Alternatively, random Fourier features can
be used as basis functions as they can capture all underly-
ing dynamics given a sufficient number of features. How-
ever, the high-dimensional feature space may not be an ef-
ficient representation as features are redundant or irrelevant
and lack the representation power of Deep Neural Networks
(DNNs). Nevertheless, random Fourier features are used in
[23] to learn an acceleration error model of a quadrotor with
a drag plate attached in windy conditions improving on the
performance of an L1 adaptive controller.

2.3 Adaptive Neural Control
The ability of NNs to accurately and computationally effi-

ciently approximate nonlinear functions has drawn interest in
the field of adaptive control. Early work focused on solving
the identification problem of nonlinear systems using NNs to
create a reference model [24, 25] whose weights are updated
online based on the error between the system and model out-
put. These networks were shallow and lacked pretraining,
limiting their performance and requiring the initial guess of

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 88

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

network weights to be close to the correct guess to ensure
stability. More recently, a quadrotor has performed an im-
pressive flip in wind using an NN to predict the unknown
forces [7], the weights are updated based on the position &
velocity error. Albeit, the network is still limited to a simple
3-layer [6,3,3] neuron architecture lacking pretraining.

Lately, meta-learning has drawn attention as a scheme
that “learns-to-learn” efficient models of systems from data
gathered in varying conditions. The learned model is capable
of fast adaptation to highly dynamic environments. Meta-
Learning algorithms typically can be decomposed into two
phases: offline learning and online adaptation. In the of-
fline learning phase, the goal is to learn a model from data
collected in various environments that capture common fea-
tures shared across all environments. In the online adaptation
phase, the goal is to adapt this model to the current environ-
ment based on the data available. A naive approach to on-
line adaptation would adapt the entire network online, how-
ever this is a computationally expensive task severely lim-
iting the depth of the network and lacks stability guaran-
tees to unpredictable outputs. A more sophisticated approach
augments the NN output with latent variables identified on-
line which represent the unknown environmental factors al-
lowing for rapid adaptation with little computational bur-
den. Meta-Learning adaptive control has achieved successful
adaptive control of quadrotors carrying suspended payloads
[26] and strong winds [27]. Of particular interest are the re-
sults achieved in [27] whose ”Neural-Fly” controller demon-
strates state-of-the-art tracking performance in strong & vary-
ing wind conditions achieving a position RMSE of 9.4cm at
wind speeds of 12.1m/s with little computational cost.

3 METHODOLOGY

In this paper vectors are denoted in lowercase bold p and
matrices in uppercase bold I, otherwise, they are scalars. Two
right-handed coordinate frames are used in this paper shown
in Figure 1, the body frame: FB : {xB ,yB , zB} located at
the center of mass of the quadrotor with xB pointing forward
and zB aligned with the collective thrust direction and the in-
ertial world frame: FW : {xW ,yW , zW } with zW pointing
in the opposite direction of gravity. Vectors with the super-
script □B are expressed in the body frame and those without
one are expressed in the world frame. The rotation from in-
ertial frame to body frame is represented by the rotational
matrix R = [xB ,yB , zB] ∈ SO(3).

3.1 Quadrotor Model

The quadrotor model is based on the model provided in
[17], modeled as a 6-degree-of-freedom rigid body with 4 in-
puts corresponding to the commanded rpms of the motors.
The translational dynamics is given by:

aI =
ft + fa + fres

m
+ g (1)

ω1

ω2

ω3

ω4

xB

zB .
yB

Body

zW
xW

yW

World

gW

Figure 1: Coordinate System Definitions

where a is the acceleration of the quadrotor’s center of
gravity; ft is the collective thrust; m is the quadrotor mass;
fa represents the aerodynamic model forces; fres captures
the remaining unmodeled forces; g =

[
0, 0,−9.81 ms−2

]T
is the gravity vector. The rotational kinematics and dynamic
equations are expressed as:

q̇ =
1

2
q ⊗ΩB (2)

Ω̇B = I−1
(
τB + τBext −ΩB × IΩB

)
(3)

where ΩB is the body frame angular velocity vector; I ∈
R3×3 is the quadrotor diagonal moment of inertia matrix; τ
are the modeled body torques and τext accounts for the any
unmodeled disturbance moments. The symbol ⊗ represents
the Hamilton quaternion product.

3.1.1 Thrust and Torque Model

The thrust and torque acting on the quadrotor are modeled in
Equation 4 & Equation 5 respectively, we assume stiff pro-
pellers with no rotor drag and neglect moments caused by
aerodynamic effects, the angular acceleration of rotors and
gyroscopic effects.

fBt =

[
0, 0, ct

4∑

i=1

ω2
i

]T
(4)

τB =

lyct −lyct −lyct lyct
lxct lxct −lxct −lxct
cτ −cτ cτ −cτ

ω2 (5)

where ct is the propeller thrust coefficient and cτ the
propeller torque coefficient; lx and ly are the moment arms
shown in Figure 1.

3.1.2 Aerodynamic Force Model

The aerodynamic model from [4] captures the major aerody-
namic effects in a computationally efficient manner.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 89

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

fBa = −
4∑

i=1

ωi

kx
ky
kz

⊙vB+

0
0

kh

(
vBx

2
+ vBy

2
)

 (6)

where vB = R (q)
T
v is the body frame velocity vec-

tor and kx, ky, kz, kh are the aerodynamic coefficients identi-
fied from flight data in [28]. The symbol ⊙ represents vector
element-wise multiplication.

3.2 Adaptive Neural Controller
The adaptive neural controller design follows the

”Neural-Fly” controller architecture closely in [27]. Neural-
Fly is a data-driven trajectory tracking controller that uses
a learning-based approach to achieve fast & accurate online
adaption by incorporating pre-trained representations using
deep learning. The controller has two main components: of-
fline meta-learning and online adaptive control. These two
components together build a model of the unmodeled forces
acting on a quadrotor of the form:

fres (x,k) ≈ ϕ (x)A (k) (7)

where ϕ is a representation function that maps the un-
modeled forces dependent on the quadrotors state x to a
shared representation across all sampled environments. A is a
set of linear coefficients that adapt to the current quadrotor en-
vironment k. The offline training phase consists of training ϕ,
a DNN using Domain Adversarial Meta-Learning (DAIML)
to learn a propeller damage invariant representation of the un-
modeled forces. The online adaptation phase aims to adapt
the linear coefficients in A to the current propeller damage
condition using a composite adaptive controller while main-
taining stability and robustness.

Combining the translational dynamics of a quadrotor in
Equation 1 with the estimate of the unmodeled force in Equa-
tion 7 we arrive at the control law of the adaptive neural con-
troller:

uf = maBr +RfBa +mgB︸ ︷︷ ︸
nominal model feedforward

−Kpep −Kvev︸ ︷︷ ︸
PD feedback

−ϕ (x) Â︸ ︷︷ ︸
adaptation

(8)

where ep = p− pr is the position tracking error, the sub-
script □r denotes the reference trajectory, i.e. ar is the ref-
erence acceleration of the desired trajectory; ev = v − vr
is the velocity tracking term; Kp and Kv are positive def-
inite control gain matrices for position and velocity respec-
tively. The output of Equation 8 is the control law uf , a vector
of commanded forces from which the corresponding attitude
and thrust is obtained through inverse kinematics.

The adaptive neural controller replaces the position con-
trol loop, and the output attitude and thrust commands are

sent to the inner attitude control loop and thrust mixer respec-
tively. In contrast to a traditional PID controller, the adaptive
neural controller also includes nominal model feed-forward
terms to account for the known aerodynamic effects and de-
sired acceleration, improving tracking of the reference tra-
jectory. The architecture of the adaptive neural controller is
shown in Figure 2.

This paper builds upon the work presented in [27] through
the following contributions: (I) validation of the ”Neural-Fly”
adaptive neural controller architecture (II) adaptation to novel
propeller damage conditions (III) analysis of the unmodeled
force prediction performance on training, testing and flight
data (IV) sensitivity analysis of the neural network architec-
ture to hyperparameters (VI) implementation of the online
adaptation phase onboard the flight controller in C.

3.2.1 Offline Training

The goal of the offline training phase is to learn a representa-
tion function ϕ (x) such that for any condition k a latent vari-
able A exists such that ϕ (x)A (k) approximates fres (x, k)
well. A DNN is used to learn this representation function
ϕ, taking advantage of the representation power of DNNs to
accurately approximate any nonlinear function given a suffi-
cient amount of neurons and training data. The optimal rep-
resentation ϕ∗ is typically obtained by minimizing the loss:

min
ϕ,A1,··· ,AK

K∑

k=1

Nk∑

i=1

∥∥yki − ϕ
(
xki
)
Ak
∥∥ (9)

where K is the total amount of conditions sampled and
Nk is the total amount of data-points collected with condition
k. It is the Euclidean norm of the error between the measured
unmodeled forces y and the network output ϕ (x)A across
all sampled conditions and data points.

Note that the minimization problem also involves the la-
tent variables A1, · · · ,AK , thus back-propagation is also
performed through A to ensure that the optimal latent vari-
ables Ak∗ are found.

However, the distribution of the quadrotor states x will
vary depending on the propeller damage condition k flown.
For example, propeller rpm values will increase as propeller
damage worsens to cope with the loss of lift. This inherent
domain shift in x caused by a shift in k may lead to over-
fitting of the network ϕ. The network ϕ could learn the
change in the unmodeled forces due to k via the change in
the distribution of x, instead of learning a propeller damage
invariant representation. To solve this domain shift problem
an adversarial loss is used:

max
h

min
ϕ,A1,··· ,AK

K∑

k=1

NK∑

i=1

(∥∥yki − ϕ
(
xki
)
Ak
∥∥

− α · Lh

(
h
(
ϕ
(
xki
))
, k
))

(10)

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 90

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

Desired
Trajectory

Feedforward

Nominal
Aerodynamic Model

Feedback

Adaptation Network

Inverse
Kinematics

Residual
Force

Gravity

Adaptive Neural Controller

Figure 2: Control Diagram of the Adaptive Neural Controller

In this adversarial loss the discriminator network h is
competing against ϕ in a zero-sum game. The network h
attempts to predict the condition k from the output of the
network ϕ (x), while ϕ attempts to approximate the residual
force measurement y while making the job of h harder. The
influence of the discriminator network h is controlled through
the regularization term α ≥ 0. Lh is the loss function of h,
typically a cross-entropy loss function is used to train classi-
fication models:

Lh = −
∑

i∈B
δk=j ⊙ log

(
h
(
ϕ
(
xki
)))

(11)

The cross-entropy loss compares the log of the output of
the discriminator network h

(
ϕ
(
xki
))

, a vector containing
the classification probabilities of each of the K conditions,
with the ground truth classification vector δi. For example, if
a data point is collected with no propeller damage with index
k = 1 the corresponding ground truth vector is δi = [1, 0, 0].

The DAIML algorithm developed in [27] is shown in al-
gorithm 1. DAIML consists of three main steps: (I) the adap-
tation step solves the least squares problem on the adaptation
batch Ba to find the optimal latent variable A∗ with a fixed
network ϕ, (II) the ϕ training step updates the parameters
of the network ϕ using Stochastic Gradient Descent (SGD)
based on the adversarial loss over the training batch Bt with
A∗, (III) the h training step updates the parameters of the
discriminator network h using SGD based on the cross en-
tropy loss over the training batch Bt.

Nevertheless, training adversarial networks is a challeng-
ing task due to problems such as mode collapse, vanish-
ing gradients and unstable convergence. Fortunately, Gen-
erative Adversarial Networks (GANs) have been extensively
researched and various well-documented features have been
shown to improve training. These improvements have been
implemented in DAIML they include (1) normalization of the

Algorithm 1: DAIML
Hyperparameters: α ≥ 0, γ > 0, 0 < η ≤ 1
Data: D = {D1, . . . ,DK}
Result: trained neural network ϕ and h

1 while not converged do
2 Randomly sample Dk ∈D

3 Randomly sample disjoint batches Ba,Bt ∈Dk

4 Solve A∗(ϕ) = argmin
A

∑
i∈Ba

∥∥yki − ϕ
(
xki
)
A
∥∥

5 Train ϕ with loss: Lϕ =∑
i∈Bt

(∥∥yki − ϕ
(
xki
)
A∗∥∥− α · Lh

(
h
(
ϕ
(
xki
))
, k
))

6 if X ∼ U(0, 1) ≤ η then
7 Train h with cross-entropy loss:

Lh = − ∑
i∈Bt

δi ⊙ log
(
h
(
ϕ
(
xki
)))

8 end
9 end

latent variable ||A∗|| > γ to improve robustness, (2) spec-
tral normalization of the weights of the discriminator network
Wh = Wh/σ(Wh) to improve the stability, (3) training the
networks ϕ and h in an alternating manner as well as training
the discriminator less frequently to improve convergence.

3.2.2 Online Adaptation

An online adaptation law based on a Kalman-filter estima-
tor is used to update the estimate of the linear coefficients Â
through Equation 12. While in the offline training phase, the
optimal coefficients A∗ are obtained by minimizing the least
squares force prediction error. In the online adaptation phase,
the goal is to minimize the position tracking error. Thus,
the linear coefficients are updated based on a composite er-

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 91

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

ror, consisting of the force prediction error and the tracking
error, improving the trajectory tracking performance of the
controller. Additionally, the Kalman-filter estimator automat-
ically tunes the gain matrix P given by Equation 13. This al-
lows the online adaptation law to estimate the complex latent
variable in the presence of varying uncertainties, alleviating
the need for constant excitation for accurate estimation.

˙̂
A = −λÂ︸ ︷︷ ︸

regularization

− Pϕ (x)
⊤
R−1(ϕ (x) Â− y)︸ ︷︷ ︸

prediction error

+ Pϕ (x)
⊤
s︸ ︷︷ ︸

tracking error

(12)

Ṗ = −2λP +Q− Pϕ (x)
⊤
R−1 + ϕ (x)P (13)

In practice, the adaptation law is implemented in a digital
system which requires the discrete version of the Kalman fil-
ter. This discrete Kalman filter suffers from numerical stabil-
ity and convergence issues, particularly in the covariance ma-
trix P . As discussed in [27], coarse integration step sizes of
the continuous time adaptation law would sometimes result in
P becoming non-positive-definite. Their proposed solution,
splitting the adaptation law into two steps: a propagation step
and an update step is implemented.

3.3 Trajectory Generation

The desired trajectory of the quadrotor is defined using a
spline that minimizes snap, the 4th derivative of position with
respect to time

....
p . Minimum snap trajectories are desirable

for quadrotor tracking since motor commands and attitude ac-
celerations are proportional to snap. Moreover, polynomial
splines are easily differentiable and useful when calculating
the velocity and acceleration of the reference trajectory.

Given a list of N waypoints W = [W1, . . . ,WN] and
Wn ∈ R3 the desired position of the quadrotor is given by
pm =

[
pmx

(t) , pmy
(t) , pmz

(t)
]

with each axis described
by one spline consisting of M = N − 1 polynomials. The
minimum snap spline of each axis is obtained by solving the
minimization problem:

min
p1,··· ,pM

M∑

m=1

∫ T

0

∥
p m (t)∥ dt (14)

where T is the amount of time for each waypoint seg-
ment. Given that the distance between waypoints is arbitrary
using the same amount of time for all segments severely con-
strains the solution quality. To improve the overall solution
the segment times are included in the cost function in Equa-
tion 15 and allowed to vary. However, changing the segment
times also changes the cost function resulting in a non-convex
optimization problem, an initial guess of segment times is re-
quired and then iteratively refined using gradient descent to
reach a minimum.

min
p1,T1,··· ,pM ,TM

M∑

m=1

∫ Tm

0

∥
p m (t)∥ dt+ µTm (15)

Subject to:
pm (0) = Wm, pm (Tm) = Wm+1 (16)

ṗ1 (0) = 0, ṗM (TM) = 0 (17)
ṗm (Tm) = ṗm+1 (0) , p̈m (Tm) = p̈m+1 (0) (18)

Tm ≥ 0, (19)

where µ > 0 is time penalty factor. The time penalty
factor influences the trade-off between minimizing snap and
total trajectory time.

4 EXPERIMENTAL SETUP

The quadrotor platform used is the Parrot Bebop 1, and is
equipped with a Parrot P7 dual-core Cortex A9 CPU and an
MPU6050 IMU. Relevant parameters of the Parrot Bebop 1
are included in Table 1.

The Parrot Bebop 1 has a thrust-to-weight ratio of
T/W ≈ 1.7 significantly lower than that of modern custom
drones, limiting the maximum speeds that can be reached.
Despite this drawback the Parrot Bebop 1 has certain advan-
tages for our application: (I) the aging onboard CPU has lim-
ited computational capacity forcing the online implementa-
tion of the adaptive neural controller to be computationally
efficient (II) the relatively large body fairing introduces com-
plex aerodynamic disturbances even at low speeds which are
hard to model (III) it is equipped out-of-the-box with rpm
sensors on all propellers.

Table 1: Parrot Bebop 1 Parameters

Parameter Unit Value
m [kg] 0.390

(lx, ly) [m] (9.5e−2, 7.75e−2)
I [gm2] diag

(
9.06e−4, 1.24e−3, 2.05e−3

)

ct [N2] 4.36e−8

cτ [Nm2] 6.60e−12

(kx, ky , kz) [kg/s]
(
1.08e−5, 9.65e−6, 2.79e−5

)

kh [kg/m] 6.26e−2

The onboard software of the Parrot Bebop 1 has been
flashed with the Paparazzi-UAV open source autopilot
project1 written in C. Designed with autonomous appli-
cations in mind and highly customizable, it allows for the
straightforward implementation of modules onboard. The of-
fline DNN training is performed in Python using Pytorch2

an open-source deep learning framework in combination with
WandB3 a powerful tool for managing and tracking machine
learning experiments.

1https://wiki.paparazziuav.org/wiki/Main_Page
2https://pytorch.org/
3https://wandb.ai/site

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 92

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

The test flights are performed in the CyberZoo, an in-
door 10 × 10 × 7 m3 square volume equipped with an Opti-
Track motion capture system. The OptiTrack measurements
are fused with the IMU measurements onboard using an Ex-
tended Kalman filter (EKF) for accurate state estimation. A
diagram of the experimental setup is shown in Figure 3.

OptiTrack

Ground Station

Motive
Paparazzi

Figure 3: Experimental Setup

5 RESULTS

5.1 Dataset
5.1.1 Data Collection

The DAIML algorithm requires data to train the represen-
tation ϕ. Data collection consists of logging relevant time-
stamped drone states as the quadrotor tracks minimum snap
trajectories using a conventional velocity PID controller.
These trajectories are generated from 10 randomly sampled
waypoints using the method outlined in subsection 3.3. If
at any point throughout the generated trajectory, the position
and a tracking margin exceed the limits of the CyberZoo a
different set of waypoints is sampled till a suitable trajectory
is found. To gather data across a wide range of velocities
several minimum snap trajectories are generated with vary-
ing time factors. However, all trajectories will travel roughly
the same distance but with varying times, resulting in slower
trajectories having more data points than faster trajectories.
To ensure a more uniform distribution of data points across
velocities multiple trajectories are logged at higher speeds,
preventing the network from learning a bias towards a certain
velocity regime due to it being over-represented in the data
collected.

To simulate propeller damage all 4 propellers of the be-
bop are cut at the tip by approximately 2mm and 4mm cor-
responding to a 5.3% and 10.5% reduction in blade radius.
Replacing the smooth elliptical propeller tips with rough rect-
angular tips increases the wing tip vortices generated by the
fast-spinning propellers. This results in a reduction in pro-
peller lift and an increase in propeller drag, altering the aero-
dynamic effects acting on the quadrotor. Data is collected on
the training and validation trajectories outlined in Table 2 for
all 3 propeller conditions: (1) no damage, (2) slight damage

Table 2: Training and Validation Dataset

Time
Factor (µ) # Total Time

(Ttot) [s] Datapoints

Train

0.2 1 270 7547
0.4 2 263 7486
0.6 3 311 8883
0.8 4 282 7968
1.0 5 287 7923
1.2 4 205 5691

Val
0.3 1 182 4815
0.7 1 81 2120
1.1 1 49 1223

Total - 22 1, 930 61, 624

(2mm) and (3) significant damage (4mm).

5.1.2 Data Processing

The unmodeled forces acting on the quadrotor are obtained by
rearranging Equation 1 to solve for fres. The quadrotor accel-
eration is required but not logged, instead, it is computed us-
ing 1st-order central difference of the velocity measurements.
However, the velocity measurements contain significant noise
which is further amplified when calculating the acceleration
derivative. A zero-phase “filtfilt” filter is used to smooth out
the velocity measurements to reduce the noise in the unmod-
eled force without introducing lag.

The dataset is divided into the 3 different propeller condi-
tions D =

{
D1,D2,D3

}
with each dataset containing Nk

input-output pairs Dk =
{
xki ,y

k
i

}Nk

i=1
of the relevant drone

states and a noisy measurement of the unmodeled forces
y = fres + ϵ, where ϵ encompasses all source of noise.

5.2 Training
The DAIML algorithm outlined in subsubsection 3.2.1

is used to train an effective representation ϕ of the pro-
peller damage invariant aerodynamic effects from the data
collected. The inputs of the network ϕ are the velocity,
quaternion and rpm states x = [v, q, rpm], while the output
representation is concatenated y = [y1, y2, y3, 1] to provide
a constant term for the adaptation. The architecture of the
network ϕ consists of [11, 50, 60, 50, 4] fully connected lay-
ers with Rectified Linear Unit (ReLU) activation functions as
shown in Figure 4. Similarly, the discriminator network h
consists of [4, 128, 3] fully connected layers with ReLU acti-
vation functions.

The hyperparameters used during training are reported in
Table 3, obtained from the sensitivity analysis. The com-
monly used Adam optimizer, an extended version of stochas-
tic gradient descent, is used to update the weights of both
networks ϕ and h with learning rates lrϕ = 2e−3 and
lrh = 4e−4 and batch sizes Bt = 128 and Ba = 512 re-
spectively. The normalization term γ = 17 ensures that the
learned adaptation coefficients remain bounded, important for
fast adaptation in the online phase. The regularization term α

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 93

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

First Layer
50 Neurons

(ReLU)

Second Layer
60 Neurons

(ReLU)

Third Layer
50 Neurons

(ReLU)

Figure 4: Neural Network ϕ Architecture

influences the degree of adversarial training. A regularization
value of α = 0.1 was found to balance the ϕ network per-
formance and disentangle the learned linear coefficients into
separate propeller conditions. The stability of the discrimina-
tor network h is improved by using a discriminator training
frequency of η = 0.75, combined with spectral normalization
of the discriminator weights.

Table 3: Hyperparameters of DAIML Algorithm

Hyperparameter Symbol Value
ϕ Network

Learning Rate lrϕ 2e−3

Normalization γ 17
Training Batch Size Bt 128

h Network
Learning Rate lrh 4e−4

Regularization α 0.1
Training Frequency η 0.75

Adaptation Batch Size Ba 512

The high dimensional adaptation coefficients are pro-
jected into a 2-dimensional plane using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) dimensionality re-
duction technique. The t-SNE algorithm preserves local sim-
ilarities in the higher dimensional data enabling visualization
of clusters and patterns. The t-SNE plots of the training adap-
tation coefficients A∗ with α = 0.1 and α = 0 are shown in
Figure 7. With α = 0 corresponding to the non-adversarial
training case. Adversarial training enforces the adaptation co-
efficients into explaining clusters that contain the propeller
damage condition information, ensuring the trained represen-
tation ϕ is condition invariant.

5.2.1 Unmodeled Force Prediction

The unmodeled force predictions of the network ϕ are shown
on the training, testing and validation data for the no propeller
damage condition. The adaptation coefficients learned during
training corresponding to the no propeller damage condition
are used to compute the unmodeled force predictions f̂ext =
ϕ (x)A∗.

t-SNE Plot of Training Adaptation Coefficients A* with = 0.1
Condition

no damage
slight damage
significant damage

t-SNE Plot of Training Adaptation Coefficients A* with = 0
Condition

no damage
slight damage
significant damage

Figure 7: t-SNE plots of the Training Adaptation Coefficients
A∗ with α = 0.1 and α = 0

The ϕ network successfully learns a representation that
captures the main features of the unmodeled forces acting
on the quadrotor, providing a filtering zero-lag estimate of
these unmodeled forces. Even at the relatively slow maxi-
mum speeds the Parrot Bebop 1 can achieve the conventional
aerodynamic model fails to model aerodynamic forces in the
order of fres ≈ 0.3 in the x-y direction and fres ≈ 0.7 in the
z-direction, which the network ϕ can model.

While the network captures the main features of the un-
modeled forces they may be off by a certain offset, this is
especially noticeable on the validation data. This may be
caused by either the different controller architecture between
train/test and validation or because a different quadrotor of
the same model is used. Substantiating the need to adapt co-
efficients online to account for differences between training
data and real-life deployment.

5.3 Tracking Performance

The tracking performance of the neural adaptive con-
troller is compared to that of the nonlinear controller in Equa-
tion 8 without the adaptation term and the baseline veloc-
ity PID controller. The performance of these controllers is
measured by tracking a randomized minimum snap trajectory
with time factor µ = 0.7 and µ = 1.1, shown in Figure 9.

The adaptive neural controller outperforms the other con-
trollers by a substantial margin, achieving a tracking error one
order of magnitude lower than the conventional velocity PID
controller and approximately ≈ 60% lower than the nonlin-

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 94

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

0 20 40 60
Time [s]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Re
sid

ua
l F

or
ce

 [N
]

X

0 20 40 60
Time [s]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Y

0 20 40 60
Time [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Z
Ground Truth
Prediction

Train

(a) Training Data

0 10 20 30 40
Time [s]

0.4

0.2

0.0

0.2

0.4

0.6

Re
sid

ua
l F

or
ce

 [N
]

X

0 10 20 30 40
Time [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Y

0 10 20 30 40
Time [s]

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Z

Ground Truth
Prediction

Test

(b) Testing Data

0 10 20 30 40
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
sid

ua
l F

or
ce

 [N
]

X

0 10 20 30 40
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4
Y

0 10 20 30 40
Time [s]

1.0

0.5

0.0

0.5

1.0

Z
Ground Truth
Prediction

Validation

(c) Validation Data

Figure 8: Unmodeled Force Predictions f̂ext = ϕ (x)A∗ for No Propeller Damage Condition

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 95

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

No Damage Slight Damage Significant Damage
Propeller Condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
sit

io
n

RM
SE

 [m
]

Controller Tracking Performance
Controller
Adaptive Neural
Nonlinear
PID

Figure 9: Controller Tracking Performance Comparison on
Minimum Snap Trajectory with µ = 0.7

ear controller. Most importantly, the tracking performance of
the adaptive neural controller barely degrades with increas-
ing propeller damage in contrast to the other controllers, with
a less than 0.03 [m] increase in tracking error. This show-
cases the ability of the adaptive neural controller to adapt to
the current propeller condition flown.

The trajectories flown using the neural adaptive controller
and the nonlinear controller are shown in Figure 10 for all
propeller damage conditions.

6 DISCUSSION & RECOMMENDATIONS

The adaptive neural controller achieves impressive track-
ing results with minimal susceptibility toward propeller dam-
age. The neural network ϕ successfully learns a represen-
tation of the unmodeled aerodynamic forces acting on the
quadrotor.

6.1 Computational Efficiency
Most quadrotor adaptive controllers in literature require

powerful embedded computers or even a ground station. The
adaptive neural controller runs onboard an aging dual-core
CPU without breaking a sweat, a testament to its computa-
tional efficiency. The efficient C implementation of the net-
work inference and adaptation allows the controller to run on-
board at≈ 30 [Hz] with a CPU load of≈ 60% but could even
run at a much faster≈ 100 [Hz] at a CPU load of≈ 80%. For
the offline learning phase, the DAIML algorithm is equally
fast at learning an efficient representation of the aerodynamic
forces taking approximately ≈ 4m to train a network from
scratch on a laptop.

6.2 Influence of Propeller Damage on Aerodynamic Model
The effect of propeller damage on the residual forces is

mainly limited to the vertical direction, with little change in
the lateral residual forces. This causes some instability in
the adversarial training procedure albeit these problems could

be solved through careful hyperparameter selection. Increas-
ing speed and propeller rpms or increasing propeller damage
should make the influence of propeller condition more no-
ticeable, however, we are ultimately limited by the thrust-to-
weight ratio of the quadrotor and the available space of the
CyberZoo.

6.3 Noisy Measurements

The ϕ network is susceptible like any other neural net-
work to the quality of the data it trains on. To compute the
unmodeled force measurements acting on the drone the veloc-
ity measurements are differentiated, which further amplifies
the noise. The OptiTrack velocity measurements experienced
high noise, frequency dropouts and occasional asynchronous
timing. Despite efforts to filter and clean the training and
testing data some of noise and errors made it through into the
ground truth data, degrading the quality of the learned repre-
sentation ϕ.

The poor quality of the OptiTrack measurements also in-
fluences the online adaptation. Significant filtering of the ve-
locity measurements is required before applying backward fi-
nite difference to obtain usable measurements of the residual
force y which have significant lag. This may cause oscilla-
tory behaviour as can be seen in some of the trajectories in
Figure 10.

6.4 Recommendations

Future work should focus on addressing the challenge of
significant noise in the residual force measurements in the
online adaptation. The quality of the residual force measure-
ments could be improved by implementing a properly tuned
Kalman-filter with accelerations as states. Additionally, ac-
celerometer measurement noise can be mitigated by using a
modern IMU or in the case of the OptiTrack velocity mea-
surements using ball infrared markers and limiting reference
trajectories to remain in areas with good OptiTrack coverage.

In terms of improving the architecture of the adap-
tive neural controller, research in artificial intelligence has
shifted towards using transformers which outperform conven-
tional fully connected or convolutional network architectures.
Transformers process a sequence of inputs in contrast to a
single input. Furthermore, transformers have recently been
employed in Generative Adversarial Networks in [29] similar
to DAIML achieving state-of-the-art performance.

The effect of propeller damage on the residual forces was
found to not be as significant as expected, diminishing the
benefits of using an adaptive controller. Instead adapting
to flying the Parrot Bebop 1 with and without bumpers at-
tached would be a better application. We believe that this
adaptive neural controller would be best suited for morphing
or VTOL UAVs which have multiple distinct aerodynamic
models which are challenging to model during the transition
phase.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 96

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Adaptive Neural Controller - No Propeller Damage

0.0

0.1

0.2

0.3

0.4

0.5

 Position
 Error [m]

Reference vs Real Trajectory

(a) Adaptive Neural Controller w/ No Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Nonlinear Controller - No Propeller Damage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Position
 Error [m]

Reference vs Real Trajectory

(b) Nonlinear Controller w/ No Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Adaptive Neural Controller - Slight Propeller Damage

0.0

0.1

0.2

0.3

0.4

 Position
 Error [m]

Reference vs Real Trajectory

(c) Adaptive Neural Controller w/ Slight Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Nonlinear Controller - Slight Propeller Damage

0.0

0.2

0.4

0.6

0.8

 Position
 Error [m]

Reference vs Real Trajectory

(d) Nonlinear Controller w/ Slight Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Adaptive Neural Controller - Significant Propeller Damage

0.0

0.1

0.2

0.3

0.4

0.5

 Position
 Error [m]

Reference vs Real Trajectory

(e) Adaptive Neural Controller w/ Significant Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Nonlinear Controller - Significant Propeller Damage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 Position
 Error [m]

Reference vs Real Trajectory

(f) Nonlinear Controller w/ Significant Propeller Damage

Figure 10: Comparison of Trajectories flown using Adaptive Neural Controller and Nonlinear Controller for all Propeller Conditions

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 97

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

7 CONCLUSION

The “Neural-Fly” controller from [27] is a lightweight
yet powerful adaptive neural controller that combines pre-
trained condition invariant representations of the unmodeled
forces using Domain Adversarially Invariant Meta-Learning
(DAIML) with fast online adaptation. While it was origi-
nally applied to wind speed conditions, we apply this adap-
tive neural architecture to various degrees of propeller dam-
age a common condition in real-work flight, demonstrating
the versatility of this controller architecture in adapting to
various conditions. We show that the adaptive neural archi-
tecture is a computationally efficient and accurate trajectory-
tracking controller architecture. The adaptive neural con-
troller is deployed fully onboard the Parrot Bebop 1 without
the need to attach powerful embedded computers, showcas-
ing the computational efficiency of our controller implemen-
tation. We perform a sensitivity analysis on the hyperparam-
eters of the DAIML algorithm consisting of 30 runs to de-
termine the optimal hyperparameters using Bayesian search,
further improving the performance of the controller. We show
that the learned propeller damage invariant representation ϕ
using DAIML successfully predicts a filtered zero-lag predic-
tion of the unmodeled forces even at the limited speeds and
propeller rpms of the experimental setup. The adaptive neural
controller successfully adapts to the various degrees of pro-
peller damage with minimal degradation in tracking perfor-
mance significantly outperforming the nonlinear and velocity
PID baseline controllers.

REFERENCES

[1] Theodore Tzanetos, MiMi Aung, J. Balaram,
Havard Fjrer Grip, Jaakko T. Karras, Timothy K.
Canham, Gerik Kubiak, Joshua Anderson, Gene
Merewether, Michael Starch, Mike Pauken, Stefano
Cappucci, Matthew Chase, Matthew Golombek,
Olivier Toupet, Marshall C. Smart, Stephen Dawson,
Erick Blandon Ramirez, Johnny Lam, Ryan Stern,
Nacer Chahat, Joshua Ravich, Robert Hogg, Benjamin
Pipenberg, Matthew Keennon, and Kenneth H. Willi-
ford. Ingenuity mars helicopter: From technology
demonstration to extraterrestrial scout. In 2022 IEEE
Aerospace Conference (AERO). IEEE, March 2022.

[2] Dara Kerr and Richard Nieva. Drones, sun — and a
strong will — elevate Rwanda’s health care.

[3] Guillem Torrente, Elia Kaufmann, Philipp Foehn, and
Davide Scaramuzza. Data-Driven MPC for Quadrotors.
In IEEE Robotics and Automation Letters, volume 6 of
2, pages 3769–3776. IEEE, March 2021.

[4] James Svacha, Kartik Mohta, and Vijay Kumar. Im-
proving quadrotor trajectory tracking by compensating
for aerodynamic effects. In 2017 International Con-

ference on Unmanned Aircraft Systems (ICUAS), pages
860–866, June 2017.

[5] Patricia Ventura Diaz and Steven Yoon. High-
Fidelity Computational Aerodynamics of Multi-Rotor
Unmanned Aerial Vehicles. In 2018 AIAA Aerospace
Sciences Meeting, Kissimmee, Florida, January 2018.
American Institute of Aeronautics and Astronautics.

[6] Ivan Lopez-Sanchez, Francisco Rossomando, Ricardo
Pérez-Alcocer, Carlos Soria, Ricardo Carelli, and Javier
Moreno-Valenzuela. Adaptive trajectory tracking con-
trol for quadrotors with disturbances by using gener-
alized regression neural networks. Neurocomputing,
460:243–255, October 2021.

[7] Mahdis Bisheban and Taeyoung Lee. Geometric Adap-
tive Control with Neural Networks for a Quadrotor UAV
in Wind fields, March 2019.

[8] Qiyang Li, Jingxing Qian, Zining Zhu, Xuchan Bao,
Mohamed K. Helwa, and Angela P. Schoellig. Deep
Neural Networks for Improved, Impromptu Trajectory
Tracking of Quadrotors, October 2016.

[9] Aminurrashid Noordin, Ariffanan Basri, and Zaharud-
din Mohamed. Simulation and experimental study on
PID control of a quadrotor MAV with perturbation. Bul-
letin of Electrical Engineering and Informatics, 9, Oc-
tober 2020.

[10] Luı́s Martins, Carlos Cardeira, and Paulo Oliveira. Lin-
ear Quadratic Regulator for Trajectory Tracking of a
Quadrotor. IFAC-PapersOnLine, 52(12):176–181, Jan-
uary 2019.

[11] J.J.E. Slotine and W. Li. Applied Nonlinear Control.
Prentice Hall, 1991.

[12] Daewon Lee, H. Jin Kim, and Shankar Sastry. Feed-
back linearization vs. adaptive sliding mode control for
a quadrotor helicopter. International Journal of Control,
Automation and Systems, 7(3):419–428, June 2009.

[13] P.V. Kokotovic. The joy of feedback: nonlinear and
adaptive. IEEE Control Systems Magazine, 12(3):7–17,
June 1992. Conference Name: IEEE Control Systems
Magazine.

[14] S. Sieberling, Q. P. Chu, and J. A. Mulder. Robust
Flight Control Using Incremental Nonlinear Dynamic
Inversion and Angular Acceleration Prediction. Journal
of Guidance, Control, and Dynamics, 33(6):1732–1742,
November 2010. Publisher: American Institute of Aero-
nautics and Astronautics.

[15] Daniel Mellinger and Vijay Kumar. Minimum snap tra-
jectory generation and control for quadrotors. In 2011

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 98

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2024-10 15th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

IEEE International Conference on Robotics and Au-
tomation, pages 2520–2525, 2011.

[16] Matthias Faessler, Antonio Franchi, and Davide Scara-
muzza. Differential Flatness of Quadrotor Dynamics
Subject to Rotor Drag for Accurate Tracking of High-
Speed Trajectories. In Robotics and Automation Let-
ters (RA-L), volume 3 of 2, pages 620–626. IEEE, April
2018.

[17] Ezra Tal and Sertac Karaman. Accurate Tracking of
Aggressive Quadrotor Trajectories using Incremental
Nonlinear Dynamic Inversion and Differential Flatness.
In IEEE Transactions on Control Systems Technology,
volume 29 of 3, pages 1203–1218. IEEE, June 2020.
arXiv:1809.04048 [cs] type: article.

[18] Sihao Sun, Angel Romero, Philipp Foehn, Elia Kauf-
mann, and Davide Scaramuzza. A Comparative
Study of Nonlinear MPC and Differential-Flatness-
Based Control for Quadrotor Agile Flight. In IEEE
Transactions on Robotic, pages 3357–3373. IEEE, De-
cember 2022. arXiv:2109.01365 [cs] type: article.

[19] Prasanth Kotaru, Ryan Edmonson, and Koushil
Sreenath. Geometric L1 Adaptive Attitude Control for
a Quadrotor Unmanned Aerial Vehicle, March 2020.

[20] Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kauf-
mann, and Davide Scaramuzza. Performance, Precision,
and Payloads: Adaptive Nonlinear MPC for Quadrotors.
IEEE Robotics and Automation Letters, 7(2):690–697,
April 2022.

[21] Zachary T. Dydek, Anuradha M. Annaswamy, and
Eugene Lavretsky. Adaptive Control of Quadrotor
UAVs: A Design Trade Study With Flight Evalua-
tions. IEEE Transactions on Control Systems Technol-
ogy, 21(4):1400–1406, July 2013. Conference Name:
IEEE Transactions on Control Systems Technology.

[22] Xichen Shi, Patrick Spieler, Ellande Tang, Elena-Sorina
Lupu, Phillip Tokumaru, and Soon-Jo Chung. Adaptive
Nonlinear Control of Fixed-Wing VTOL with Airflow
Vector Sensing. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 5321–5327,
May 2020. ISSN: 2577-087X.

[23] Alexander Spitzer and Nathan Michael. Feedback Lin-
earization for Quadrotors with a Learned Acceleration
Error Model. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 6042–6048,
May 2021.

[24] Fu-Chuang Chen and H.K. Khalil. Adaptive control of
a class of nonlinear discrete-time systems using neu-
ral networks. IEEE Transactions on Automatic Control,
40(5):791–801, May 1995.

[25] A. Kondratiev and Y. Tiumentsev. Inverse Dynam-
ics Approach to Adaptive Damage-Tolerant Control for
Unmanned Aerial Vehicles. In Proceedings of the Inter-
national Micro Air Vehicle conference and flight com-
petition 2011 summer edition, 2011.

[26] Suneel Belkhale, Rachel Li, Gregory Kahn, Rowan
McAllister, Roberto Calandra, and Sergey Levine.
Model-Based Meta-Reinforcement Learning for Flight
with Suspended Payloads. IEEE Robotics and Automa-
tion Letters, 6(2):1471–1478, April 2021.

[27] Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar
Azizzadenesheli, Anima Anandkumar, Yisong Yue, and
Soon-Jo Chung. Neural-Fly Enables Rapid Learning for
Agile Flight in Strong Winds. In Science Robotics, vol-
ume 7 of 66, page eabm6597. American Association for
the Advancement of Science, May 2022.

[28] Robin Ferede, Guido C. H. E. de Croon, Christophe De
Wagter, and Dario Izzo. An adaptive control strategy for
neural network based optimal quadcopter controllers,
2023.

[29] Drew A. Hudson and C. Lawrence Zitnick. Generative
Adversarial Transformers, March 2022.

SEPTEMBER 16-20, 2024, BRISTOL, UNITED KINGDOM 99

	Papers
	Adaptive Neural Network Quadrotor Trajectory Tracking Controller Tolerant to Propeller Damage

