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ABSTRACT

In this paper, we propose a methodology for au-
tomatic detection of a landing and no landing
zone for unmanned aerial vehicles. This frame-
work consists of two processes carried out in a
frame-to-frame basis: (1) an aerial depth esti-
mated with a multiple layer Convolutional Neu-
ral Network architecture; (2) zone classification
carried out with another Neural Network, based
on the Inception Convolutional Neural Network,
that learns from the aerial depth estimation. The
novel aspects in this work are related to the train-
ing of these networks. Depth examples associ-
ated to aerial images are difficult to obtain since
no public datasets of this sort are available. Like-
wise, diverse examples of landing and no land-
ing zones based on aerial depth estimation are
difficult to generate due to flight restrictions in
urban areas. Motivated by this, we exploit pub-
lic datasets meant for autonomous cars and syn-
thetic data generated with simulation. We carried
out evaluations using different synthetic datasets
to those of training, real images obtained from
the Internet, and flights in real scenarios with
promising results.

1 INTRODUCTION

Nowadays, deployment of drones in outdoor missions is
a common practice. There is an increasing number of appli-
cations where drones are piloted or sent to fly autonomously
over rural, urban or natural environments, flying several kilo-
metres away from the take-off position or even beyond the
line-of-sight. In this context, it might happen that the mission
has to be aborted or simply that the drone has to be retrieved
due to low battery, which in many modern drones triggers
the autonomous function return home. However, low battery
is exactly a major cause of drone accidents since the battery
may run out way before the drone returns. If the drone is kilo-
metres far away, rather than bringing it home, the pilot may
decide to take over and try to land it in a safe spot, using the
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Figure 1: Our proposed system uses two processes, a depth
image estimator and a zone classification of single aerial im-
ages, aiming at automatically detecting zones that are safe
for landing, see video example in: https://youtu.be/
E8TZfErP8F8

transmitted video to identify an adequate landing zone. Nev-
ertheless, interferance or delay in video transmission could
affect such task.

The above calls for a method that enables the drone to
autonomously decide whether an observed area is a landing
zone or not. Thus, we propose a two-step methodology for
landing zone detection where only an onboard monocular
camera is used to carry out the detection. The process in-
volves two steps carried out in a frame-to-frame basis. First,
a single aerial image captured by the onboard camera s pro-
cessed by a Convolutional Neural Network (CNN), whose
output will be that of a depth image estimation. A second
step will grab the estimated depth image and pass it through
another CNN network, referred by us as LandNet, that will
output one of two classes: Landing and No-Landing, see Fig-
ure 1.

To achieve the above, the first CNN architecture for depth
estimation has been trained using the well-known KITTI
dataset, where RGB images and corresponding depth data are
available. However, the chosen KITTI dataset was recorded
with a camera pointing forward and mounted on a car rid-
ding around a city. The scene is far from similar to what is
observed in aerial images captured with a camera on board
a drone with camera angle pointing downwards. Yet, we ar-
gue that the KITTI images and depth data could be exploited
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to learn depth associated to texture patterns, in particular for
depths in between the 20 and 60 metres, and can be trans-
ferred to the textures observed from the aerial cameras, thus
useful to estimate depth. We followed this approach since
there are no datasets available for aerial images with corre-
sponding depth images, something difficult to generate with
current stereo or depth cameras that work only for short depth
ranges and under artificial light.

The second part of our approach exlploits the idea that
depth image estimates belong to a metric space in the 3D
world, not in the texture space of RGB images. Hence, we
decided to test our depth image estimator on a simulated ur-
ban environment where we could obtain depth images. We
observed that our depth estimator exhibits an error of up to
10 meters for aerial images captured at 40 or more meters
of height. However, the depth estimates appear coherent re-
garding planar surfaces, which are exactly what we desire to
detect as landing zones. Thus, by using simulation, we gen-
erate loads of annotated depth images with landing and no
landing labels, and train a second CNN aim at generating a
model that learns to separate the 3D shape of a landing zone
from a no landing zone.

To present our approach, this work has been organized as
follows: section 2 presents the related work; section 3 de-
scribes our methodology; section 4 presents our results and
section 5 discusses our conclusions and future work.

2 RELATED WORK

Autonomous landing problem for UAVs has been widely
studied using different approaches and over diverse scenar-
ios. We can find two main scenarios for autonomous landing,
those where the selected site is static [1, 2, 3, 4, 5, 6, 7, 8], and
others when is in moving (e.g., ships or other kinds of vehi-
cles) [9, 10, 11, 12, 13, 14, 15]. Nevertheless, one element in
common in both scenarios is the use of the markers that are
placed on the selected landing site.

Among the approaches applied to the problem of au-
tonomous landing, the use of sensors such as Light Detec-
tion and Ranging or Laser Imaging Detection and Ranging
(LiDAR) [1, 2, 3, 4] provides of point clouds that can be
processed aiming at detecing adecuate landing surfaces. For
instance, in [3], the authors proposed a deep learning ap-
proach, where LiDAR point clouds are classified into a vol-
umetric occupancy by using a 3D CNN architecture. In con-
trast, other works are opted to use infrared vision informa-
tion [7, 8, 9, 10]. The works in [9, 10] describe a coopera-
tive system where the objects at the ground form a T-shaped,
being their detection used to estimate UAV’s pose and per-
forming an autonomous landing. In [7], a system based on
an infrared stereo vision is proposed. The system is fixed on
the ground and is used to track the UAV’s position during the
landing process. In [8], an infrared camera array guidance
system is used to drive the landing. Although these systems
are shown to work, they are tailored for specific zones, need-

Figure 2: CNN architecture used for aerial depth estimation.

Figure 3: Architecture of the zone classifier based on Incep-
tion modules for the feature extraction section of the network.

less to say that those using infrarred cameras are prone to
misbehave in zones with high temperatures. .

Other systems for autonomous landing rely only on using
RGB imagery transmitted by on board cameras [5, 6, 11, 12,
13, 14, 15, 16]. In [5], GPS in conjunction with vision are
used to locate a landing target and land on it, being the vision
used to leverage the target detection and recognition.

Finally, another set of works propose to use landmark de-
tection to recognize landing areas. For instance, in [16], the
authors propose a CNN architecture based on two efficient
nets: YOLO [17] and Squeezenet [18]. The main idea is that
of detecting different landmarks, in addition to maintain the
efficiency of the detection. In contrast, in this work, we pro-
pose to carry out the detection without depending on any vi-
sual texture or marks.

3 METHODOLOGY

The task of detecting landing zones were divided into two
secondary tasks, these tasks are the estimation of aerial depth
maps and the classification of possible landing zones. Our
approach on solving these tasks is based on machine learning
techniques. For the task of aerial depth estimation we de-
signed and trained a CNN following a methodology based on
extraction of patches from RGB images. For the problem of
zone classification from the depth maps, we propose a classi-
fier based on the Inception modules [19].

3.1 Aerial depth estimation approach

The estimation of depth from aerial images is addressed
using a methodology that exploits visual information by pro-
cessing tiny patches from publicly available datasets imagery.
For our purpose we processed images from the KITTI dataset
to extract these patches from both RGB images and depth
maps. The idea behind this approach is to take advantage
of the farthest depth data available in the dataset imagery,
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(a) City to generate aerial synthetic images for training.

(b) City to generate synthetic aerial images for evaluation of our ap-
proach.

Figure 4: Simulated urban scenarios created in Gazebo 7.

the greatest depth is located at the central part of the im-
age, which is corresponds to the horizon view in the KITTI
dataset. The patches used for processing are extracted from
the central part of the image and are extracted after dividing
the RGB image into equal-size patches. Once the patches are
extracted, each patch is mapped to the average depth of the
pixel neighbourhood in the depth map, the patches without
depth information were excluded. This methodology lead to
explore the design of a CNN architecture, which is shown in
Figure 2.

This CNN architecture accepts the 25× 25 patches as in-
put and is followed by 3 convolutions with a batch normal-
ization, in the final part of the architecture a max pooling op-
eration is performed and a regression layer is used for the
estimation of the depth of the corresponding patch. We de-
signed this architecture given that most of the current CNN
architectures work with images of a higher resolution to that
of our extracted patches.

3.2 LandNet

The aim of the LandNet network is to detect possible
landing zones from a given depth map, in our case this depth
map is obtained from the mentioned depth estimator. We
choose this approach due to the fact that while our depth es-
timator is good at recovering the shape of scene view it lacks
of precision on the estimated depth and it would affect ap-
proaches based on geometrical detection of landing zones.

The proposed network accepts as input a depth map with
size of 80× 45 pixels and is followed by two Inception mod-
ules, corresponding to the feature extraction part of the net-
work, see Figure 3. We use these Inception modules to ex-
tract different size of features from the depth map and to give
the network the capability of learning more details from the
depth map. After these two modules, we use a max pooling
layer of size (2, 2) followed by two convolutions and batch
normalization. In the last part of the network we added three
fully connected layers and a final softmax activation function.
All the convolutions in our network, including the ones com-
posing the Inception modules, use rectified linear activation.
The output of the network is a probability of which of the two
classes the actual view corresponds to.

3.3 Datasets
Our datasets consists on images collected from a simu-

lated environment using the Gazebo simulator. We designed
two different cities for this purpose, each city is composed by
buildings, roads and trees as shown in Figure 4. We used an
AR Drone MAV in the simulation for collecting the datasets.
The images were collected from the bottom camera of the
MAV. These images were feed to our aerial depth estimator to
obtain the corresponding depth map for each of the RGB im-
ages on our dataset. In order to consider a depth map contain-
ing a possible landing zone the estimated map should contain
a plain surface, to achieve this we monitored the RGB image
and the estimated depth map and when the MAV reached a
plain surface the estimated depth was stored into a file, Fig-
ure 5(a). The depth maps corresponding to views of trees,
mountains or non-plain roofs were considered as no-landing
zones, Figure 5(b). A total of 2000 images were obtained
from the simulations environment for training and 1000 im-
ages for evaluation, with an equal number of samples for each
of the two classes.

4 EXPERIMENTS AND RESULTS

In this section, we describe the evaluation results, the
control architecture employed, the vehicle hardware imple-
mented and the experiments realised in simulation and out-
door environments.

4.1 Evaluation
To evaluate the performance of our landing zone detec-

tion, we used two new datasets. Each dataset includes 1000
aerial images, 500 images of landing zones and 500 no land-
ing zones. The first dataset was collected from a second sim-
ulated city on Gazebo, see Figure 6(a), and the second dataset
was collected from the internet images, Figure 6(b).

We compared the evaluation results of our proposed clas-
sifier to the classifier trained with RGB images. For the first
dataset, our classifier achieved 82% of accuracy to detect a
secure landing zone and 75% to detect no landing zone, Fig-
ure 7(a), and the RGB classifier achieved 67% and 72% of
accuracy to detect a secure landing zone and no landing zone,
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a) Landing Zones.

b) No landing zones.

Figure 5: Examples of synthetic aerial images, including their estimated depth image with our approach. Note that planar
surfaces, ideal for landing, exhibit similar gray tone. For depth images, the farther the depth, w.r.t. the camera, the darker the
gray value.

a) Synthetic aerial images for evaluation.

b) Aerial images downloaded from the Internet for evaluation.

Figure 6: Examples of aerial images, and their corresponding estimated depth, used for evaluation: the first set corresponds to
synthetic images generated with the second simulated city, shown in Figure 4.b; the second set corresponds to aerial images
downloaded from the Internet.
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(a) Training: depth; evalu-
ated: synthetic images.

(b) Training: depth; eval-
uated: Internet images

(c) Training: RGB; evalu-
ated: synthetic images..

(d) Training: RGB; evalu-
ated: Internet images.

Figure 7: Confusion matrix of our CNNs trained with depth
images and compared against when trained with RGB im-
ages. Better results are obtained with depth.

respectively, Figure 7(c). According to the confusion matri-
ces, our classifier trained with depth maps is more effective to
detect secure landing zones compared to the classifier trained
with RGB images, this is attributed to the capability of the
network for learning depths of planar regions. For the second
dataset, our classifier increments by 5% on the accuracy to
detect a secure landing zone and by 4% to detect no landing
zone, Figure 7(b) and the classifier trained with RGB images
decreases its accuracy 8% to detect a no landing zone, Figure
7(d). This confusion matrix proves that our classifier based
on depth maps is more stable to identify secure zones to land
compared to RGB classifier.

4.2 System Architecture

The proposed landing detection system was implemented
in ROS Kinetic Kame and consists of three nodes. One en-
ables the communication with the drone for image transmis-
sion from the the drone to the computer and enables the con-
trol of the drones from the computer. The second node ac-
quires the RGB image from the drone to obtain the depth im-
age using the described method in section 3.1. Then we used
the classifier described in section 3.2, to define if the current
zone is a secure zone for landing and publish a flag. In the
last node, we implement a controller. This node receives the
flag and uses for two options: 1) to continue the navigation
until finding a secure zone to land; 2) to keep the drone on
hovering and then send a signal to land. To guarantee a se-
cure landing, we use the average of 10 classified frames to
decide whether a landing zone is detected or not.

4.3 Experiments in Simulation

We first present experiments in a simulated environment,
and we use tum simulator package and Gazebo 7. The simu-
lated drone navigates upon the city shown in the Figure 4(b).
We flew the drone in manual mode at 15 metres in height. The
path flight consisted of cover areas to detect possible landing
zones when the classifier detects a landing zone the drone stay
on hovering and then lands. The Figure 8, shows the simu-
lation test, each figure show the simulated environment, the
image from the drone and the estimated depth.

Figure 8: Two illustrative examples of our approach tested in
a simulated urban environment.

4.4 Experiments in Outdoor Environment

For these experiments, the tests consisted of flying the
drone in a real outdoor environments at 25 meters in height.
The drone flew over trees, buildings with flat and spherical
roofs. In Figure 9, the images show examples of the detec-
tion, whether it is a landing or a no landing zone. When fly-
ing over the roof of a building, our system correctly identifies
it as a landing zone. Our system exhibit a processing time of
5Hz, which includes depth estimation and landing/no land-
ing classification.

Figure 9: Two illustrative examples of our approach tested in
real outdoor, see https://youtu.be/E8TZfErP8F8

5 CONCLUSION

We have presented a method for automatic detection of
landing zones for UAVs using aerial images captured with
an onboard RGB camera. To address this problem we have
used two main ideas: (1) to estimate a depth image from the
aerial image; (2) to use the estimated depth images, anno-
tated accordingly, to train a computational model that will
learn landing zones and no landing zones. For both tasks, we
have implemented two CNNs, where we have used a public
dataset from another domain (autonomous vehicles) to obtain
training examples for aerial depth estimation, and also us-
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ing synthetic data generated with a simulator of urban scenes,
useful to generate loads of aerial depth images.

We carried out tests with different synthetic data, images
from the Internet and during flight missions in real challeng-
ing scenarios, obtaining around 80% of accuracy for synthetic
and real images. We have also studied the case of when our
approach is trained with RGB images instead of depth im-
ages, for the landing/no landing detection, obtaining and av-
erage of 65% in accuracy, proving the benefit of using depth
data rather than texture. In average, our whole system works
at 5Hz, however, we are confident that we can speed up this
process by refining our CNN architectures.

As future work, we will improve upon the aerial depth
estimation as much as to increase the processing speed.
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